{"title":"Polynomial-Time Algorithms for Continuous Metrics on Atomic Clouds of Unordered Points","authors":"Vitaliy Kurlin","doi":"10.46793/match.91-1.079k","DOIUrl":null,"url":null,"abstract":"The most fundamental model of a molecule is a cloud of unordered atoms, even without chemical bonds that can depend on thresholds for distances and angles. The strongest equivalence between clouds of atoms is rigid motion, which is a composition of translations and rotations. The existing datasets of experimental and simulated molecules require a continuous quantification of similarity in terms of a distance metric. While clouds of m ordered points were continuously classified by Lagrange’s quadratic forms (distance matrices or Gram matrices), their extensions to m unordered points are impractical due to the exponential number of m! permutations. We propose new metrics that are continuous in general position and are computable in a polynomial time in the number m of unordered points in any Euclidean space of a fixed dimension n.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"30 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/match.91-1.079k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The most fundamental model of a molecule is a cloud of unordered atoms, even without chemical bonds that can depend on thresholds for distances and angles. The strongest equivalence between clouds of atoms is rigid motion, which is a composition of translations and rotations. The existing datasets of experimental and simulated molecules require a continuous quantification of similarity in terms of a distance metric. While clouds of m ordered points were continuously classified by Lagrange’s quadratic forms (distance matrices or Gram matrices), their extensions to m unordered points are impractical due to the exponential number of m! permutations. We propose new metrics that are continuous in general position and are computable in a polynomial time in the number m of unordered points in any Euclidean space of a fixed dimension n.
期刊介绍:
MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.