Inferring molecular mechanisms of host-microbe-drug interactions in the human gastrointestinal tract

B. Roja, S. Saranya, L. Thamanna, P. Chellapandi
{"title":"Inferring molecular mechanisms of host-microbe-drug interactions in the human gastrointestinal tract","authors":"B. Roja,&nbsp;S. Saranya,&nbsp;L. Thamanna,&nbsp;P. Chellapandi","doi":"10.1016/j.meomic.2023.100027","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to elucidate the metabolic interplay between food-borne bacteria, gut methanogens, and probiotic bacteria using the host-microbe-drug interactome. This study also aimed to identify suitable drug combinations that could effectively combat food-borne infections without adversely affecting the normal gut microbes. In this study, the system medicine framework comprised 2654 edges and 1609 nodes, with 1370 interacting human genes. Through network modeling analysis, we identified interactions among 39 human target genes for food-borne bacteria, 11 targets for gut methanogens, and nine targets for probiotic bacteria. Gut methanogens target common human genes for their pathophysiological functions. Linoleic acid has emerged as a crosstalk metabolite that determines the abundance of foodborne bacteria. Gut microbes commonly share butyric acid, CO<sub>3</sub>, and formaldehyde as metabolic precursors. Most antibiotics interact with human genes that target the gut methanogens and probiotic bacteria. Our study identified fusidic acid, nabiximol, oxacillin, ampicillin, phenoxymethylpenicillin, and cefdinir as repurposable antibiotics against foodborne bacterial infections. Chloroquine, an antimalarial drug, has been suggested as a potential repurposable drug for foodborne infections, owing to its indirect association with many foodborne bacteria via host-mediated interactions. Thus, our system medicine framework could potentially aid in suggesting repurposable antibiotics against food-borne bacterial infections, without affecting beneficial microbes in the human gastrointestinal tract.</p></div>","PeriodicalId":100914,"journal":{"name":"Medicine in Omics","volume":"10 ","pages":"Article 100027"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590124923000081/pdfft?md5=94bb8f9882f44d3d6830b27127295383&pid=1-s2.0-S2590124923000081-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Omics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590124923000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to elucidate the metabolic interplay between food-borne bacteria, gut methanogens, and probiotic bacteria using the host-microbe-drug interactome. This study also aimed to identify suitable drug combinations that could effectively combat food-borne infections without adversely affecting the normal gut microbes. In this study, the system medicine framework comprised 2654 edges and 1609 nodes, with 1370 interacting human genes. Through network modeling analysis, we identified interactions among 39 human target genes for food-borne bacteria, 11 targets for gut methanogens, and nine targets for probiotic bacteria. Gut methanogens target common human genes for their pathophysiological functions. Linoleic acid has emerged as a crosstalk metabolite that determines the abundance of foodborne bacteria. Gut microbes commonly share butyric acid, CO3, and formaldehyde as metabolic precursors. Most antibiotics interact with human genes that target the gut methanogens and probiotic bacteria. Our study identified fusidic acid, nabiximol, oxacillin, ampicillin, phenoxymethylpenicillin, and cefdinir as repurposable antibiotics against foodborne bacterial infections. Chloroquine, an antimalarial drug, has been suggested as a potential repurposable drug for foodborne infections, owing to its indirect association with many foodborne bacteria via host-mediated interactions. Thus, our system medicine framework could potentially aid in suggesting repurposable antibiotics against food-borne bacterial infections, without affecting beneficial microbes in the human gastrointestinal tract.

推断人类胃肠道中宿主-微生物-药物相互作用的分子机制
本研究旨在利用宿主-微生物-药物相互作用组来阐明食源性细菌、肠道产甲烷菌和益生菌之间的代谢相互作用。这项研究还旨在确定合适的药物组合,可以有效地对抗食源性感染,而不会对正常的肠道微生物产生不利影响。在本研究中,系统医学框架由2654条边和1609个节点组成,其中有1370个相互作用的人类基因。通过网络建模分析,我们确定了39个人类食源性细菌靶基因、11个肠道产甲烷菌靶基因和9个益生菌靶基因之间的相互作用。肠道产甲烷菌以常见的人类基因为目标,发挥其病理生理功能。亚油酸已成为一种决定食源性细菌丰度的串扰代谢物。肠道微生物通常共享丁酸、CO3和甲醛作为代谢前体。大多数抗生素与针对肠道产甲烷菌和益生菌的人类基因相互作用。我们的研究确定了夫西地酸、那比西莫、奥西林、氨苄西林、苯氧苄青霉素和头孢地尼是可重复使用的抗生素,用于治疗食源性细菌感染。氯喹是一种抗疟疾药物,由于其通过宿主介导的相互作用与许多食源性细菌间接相关,已被认为是一种潜在的可重复使用的食源性感染药物。因此,我们的系统医学框架可能有助于建议针对食源性细菌感染的可重复使用的抗生素,而不会影响人类胃肠道中的有益微生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信