{"title":"Iron-Added Sediment Microbial Fuel Cells to Suppress Phosphorus Release from Sediment in an Agricultural Drainage","authors":"Gamamada Liyanage Erandi Priyangika Perera, Morihiro Maeda, Hiroaki Somura, Chiyu Nakano, Yuta Nishina","doi":"10.2965/jwet.23-040","DOIUrl":null,"url":null,"abstract":"Phosphorus (P) release from sediment caused eutrophication in Kojima Lake, Japan. The efficiency of iron-added sediment microbial fuel cells (SMFCs) in regulating P release from agricultural drainage sediment was investigated in this study. Surface sediment collected from an agricultural drainage canal flowing into Kojima Lake was mixed with iron oxide (Fe2O3) or amorphous iron oxyhydroxide (FeOOH) at 50 mmol kg−1. A 14.6-cm high acrylic pipe was filled with 80 mL of deionized water after 130 g of sediment was placed. A 3 × 3 cm graphite felt was used for the anode in a dual chamber SMFC, while a carbon rod was used for the cathode. Three treatments: No Fe, Fe2O3, and FeOOH, were operated for 408 h under open or closed circuit conditions. Results showed that FeOOH addition lowered P release from sediment regardless of SMFC operational conditions, suggesting that higher P adsorption by FeOOH may mask the effect of SMFCs. Fe2O3 did not reduce total P concentration in the overlying water. In addition, electricity generation was not enhanced by Fe-added SMFCs. Although SMFCs increased sedimentary redox potential, P release was not suppressed by the SMFC operation, indicating that organic P would be released by SMFCs from P-rich sediment.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2965/jwet.23-040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) release from sediment caused eutrophication in Kojima Lake, Japan. The efficiency of iron-added sediment microbial fuel cells (SMFCs) in regulating P release from agricultural drainage sediment was investigated in this study. Surface sediment collected from an agricultural drainage canal flowing into Kojima Lake was mixed with iron oxide (Fe2O3) or amorphous iron oxyhydroxide (FeOOH) at 50 mmol kg−1. A 14.6-cm high acrylic pipe was filled with 80 mL of deionized water after 130 g of sediment was placed. A 3 × 3 cm graphite felt was used for the anode in a dual chamber SMFC, while a carbon rod was used for the cathode. Three treatments: No Fe, Fe2O3, and FeOOH, were operated for 408 h under open or closed circuit conditions. Results showed that FeOOH addition lowered P release from sediment regardless of SMFC operational conditions, suggesting that higher P adsorption by FeOOH may mask the effect of SMFCs. Fe2O3 did not reduce total P concentration in the overlying water. In addition, electricity generation was not enhanced by Fe-added SMFCs. Although SMFCs increased sedimentary redox potential, P release was not suppressed by the SMFC operation, indicating that organic P would be released by SMFCs from P-rich sediment.
期刊介绍:
The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.