Forelimb motion and orientation in the ornithischian dinosaurs Styracosaurus and Thescelosaurus, and its implications for locomotion and other behavior

IF 1.7 4区 地球科学 Q2 PALEONTOLOGY
Philip Senter, Jared Mackey
{"title":"Forelimb motion and orientation in the ornithischian dinosaurs Styracosaurus and Thescelosaurus, and its implications for locomotion and other behavior","authors":"Philip Senter, Jared Mackey","doi":"10.26879/1289","DOIUrl":null,"url":null,"abstract":"The range of motion (ROM) in the forelimb has previously been studied in many saurischian dinosaur species but only a few ornithischian dinosaur species. Here, we fill in some of the blanks in current knowledge of ornithischian forelimb function by investigating the range of shoulder motion and the orientation of the humerus, radius, and ulna in the centrosaurine ceratopsid Styracosaurus albertensis and the basal orni-thopod Thescelosaurus sp. Manual manipulation of forelimb bones, using the margins of bony articular surfaces to delimit the range of motion, shows that humeral ROM and forearm orientation in S. albertensis resemble those previously found in chasmosau-rine ceratopsians. Locomotion occurred with the elbows tucked in at the sides and with the radius anterior to the ulna, without pronation. The animal was also capable of splaying its forelimbs with the elbows strongly everted, so that elbow flexion and extension produced side-to-side or up-and-down movements of the torso and head. Thesce-losaurus sp. had limited humeral ROM and could not swing its humerus forward through the parasagittal plane as far as a vertical orientation. While being swung upward through the transverse plane, the humerus could not move as high as a horizontal position. Skeletal proportions and spinal curvature indicate that the forelimbs of Thescelosaurus could contact the ground while the animal stood. However, the animal is unlikely to have used quadrupedal locomotion, because its palms faced medially, and its fingers would have flexed through the transverse plane and therefore would not have provided forward propulsion","PeriodicalId":49139,"journal":{"name":"Palaeontologia Electronica","volume":"52 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeontologia Electronica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26879/1289","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The range of motion (ROM) in the forelimb has previously been studied in many saurischian dinosaur species but only a few ornithischian dinosaur species. Here, we fill in some of the blanks in current knowledge of ornithischian forelimb function by investigating the range of shoulder motion and the orientation of the humerus, radius, and ulna in the centrosaurine ceratopsid Styracosaurus albertensis and the basal orni-thopod Thescelosaurus sp. Manual manipulation of forelimb bones, using the margins of bony articular surfaces to delimit the range of motion, shows that humeral ROM and forearm orientation in S. albertensis resemble those previously found in chasmosau-rine ceratopsians. Locomotion occurred with the elbows tucked in at the sides and with the radius anterior to the ulna, without pronation. The animal was also capable of splaying its forelimbs with the elbows strongly everted, so that elbow flexion and extension produced side-to-side or up-and-down movements of the torso and head. Thesce-losaurus sp. had limited humeral ROM and could not swing its humerus forward through the parasagittal plane as far as a vertical orientation. While being swung upward through the transverse plane, the humerus could not move as high as a horizontal position. Skeletal proportions and spinal curvature indicate that the forelimbs of Thescelosaurus could contact the ground while the animal stood. However, the animal is unlikely to have used quadrupedal locomotion, because its palms faced medially, and its fingers would have flexed through the transverse plane and therefore would not have provided forward propulsion
鸟臀目恐龙Styracosaurus和Thescelosaurus的前肢运动和方向及其对运动和其他行为的启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Founded in 1997, Palaeontologia Electronica (PE) is the longest running open-access, peer-reviewed electronic journal and covers all aspects of palaeontology. PE uses an external double-blind peer review system for all manuscripts. Copyright of scientific papers is held by one of the three sponsoring professional societies at the author''s choice. Reviews, commentaries, and other material is placed in the public domain. PE papers comply with regulations for taxonomic nomenclature established in the International Code of Zoological Nomenclature and the International Code of Nomenclature for Algae, Fungi, and Plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信