An ODE-based neural network with Bayesian optimization

IF 0.4 Q4 MATHEMATICS, APPLIED
Hirotada Honda, Takashi Sano, Shugo Nakamura, Mitsuaki Ueno, Hiroki Hanazawa, Nguyen Manh Duc Tuan
{"title":"An ODE-based neural network with Bayesian optimization","authors":"Hirotada Honda, Takashi Sano, Shugo Nakamura, Mitsuaki Ueno, Hiroki Hanazawa, Nguyen Manh Duc Tuan","doi":"10.14495/jsiaml.15.101","DOIUrl":null,"url":null,"abstract":"An application of the Bayesian optimization to an ordinary differential equation-based neural network is proposed. The loss function was considered as a black box function of the coefficients, and Bayesian optimization was applied to obtain desirable parameter values. The proposed method drastically simplifies the implementation because the adjoint method-based updating of coefficients is not required. Numerical experiments demonstrate that the performance of the proposed method is comparable to that of existing methods.","PeriodicalId":42099,"journal":{"name":"JSIAM Letters","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSIAM Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14495/jsiaml.15.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

An application of the Bayesian optimization to an ordinary differential equation-based neural network is proposed. The loss function was considered as a black box function of the coefficients, and Bayesian optimization was applied to obtain desirable parameter values. The proposed method drastically simplifies the implementation because the adjoint method-based updating of coefficients is not required. Numerical experiments demonstrate that the performance of the proposed method is comparable to that of existing methods.
一种基于ode的贝叶斯优化神经网络
提出了贝叶斯优化在常微分方程神经网络中的应用。将损失函数视为系数的黑盒函数,并采用贝叶斯优化方法获得理想的参数值。由于不需要基于伴随方法的系数更新,该方法大大简化了实现过程。数值实验表明,该方法的性能与现有方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JSIAM Letters
JSIAM Letters MATHEMATICS, APPLIED-
自引率
25.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信