Fixed point indices and fixed words at infinity of selfmaps of graphs II

Pub Date : 2023-02-26 DOI:10.12775/tmna.2022.007
Qiang Zhang, Xuezhi Zhao
{"title":"Fixed point indices and fixed words at infinity of selfmaps of graphs II","authors":"Qiang Zhang, Xuezhi Zhao","doi":"10.12775/tmna.2022.007","DOIUrl":null,"url":null,"abstract":"The index $\\mathrm{ind}(\\mathbf{F})$ of a fixed point class $\\mathbf{F}$ is a classical invariant in the Nielsen fixed point theory. In the recent paper \\cite{ZZ}, the authors introduced a new invariant $\\mathrm{ichr}(\\mathbf{F})$ called the improved characteristic, and proved that $\\mathrm{ind}(\\mathbf{F})\\leq \\mathrm{ichr}(\\mathbf{F})$ for all fixed point classes of $\\pi_1$-injective selfmaps of connected finite graphs. In this note, we show that the two homotopy invariants mentioned above are exactly the same. Since the improved characteristic is totally determined by the endomorphism of the fundamental group, we give a group-theoretical approach to compute indices of fixed point classes of graph selfmaps. As a consequence, we give a new criterion of a fixed point, which extends the one due to Gaboriau, Jaeger, Levitt and Lustig.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The index $\mathrm{ind}(\mathbf{F})$ of a fixed point class $\mathbf{F}$ is a classical invariant in the Nielsen fixed point theory. In the recent paper \cite{ZZ}, the authors introduced a new invariant $\mathrm{ichr}(\mathbf{F})$ called the improved characteristic, and proved that $\mathrm{ind}(\mathbf{F})\leq \mathrm{ichr}(\mathbf{F})$ for all fixed point classes of $\pi_1$-injective selfmaps of connected finite graphs. In this note, we show that the two homotopy invariants mentioned above are exactly the same. Since the improved characteristic is totally determined by the endomorphism of the fundamental group, we give a group-theoretical approach to compute indices of fixed point classes of graph selfmaps. As a consequence, we give a new criterion of a fixed point, which extends the one due to Gaboriau, Jaeger, Levitt and Lustig.
分享
查看原文
图的自映射的不动点指标和无穷远处的不动字
不动点类的指标$\mathrm{ind}(\mathbf{F})$$\mathbf{F}$是Nielsen不动点理论中的经典不变量。在最近的论文\cite{ZZ}中,作者引入了一个新的不变量$\mathrm{ichr}(\mathbf{F})$,称为改进特征,并证明了$\pi_1$ -连通有限图的内射自映射的所有不动点类的$\mathrm{ind}(\mathbf{F})\leq \mathrm{ichr}(\mathbf{F})$。在这篇笔记中,我们证明了上面提到的两个同伦不变量是完全相同的。由于改进的特征完全由基群的自同态决定,我们给出了计算图自映射不动点类指标的群论方法。因此,我们给出了一个新的不动点判据,它推广了Gaboriau, Jaeger, Levitt和Lustig的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信