{"title":"Fixed point indices and fixed words at infinity of selfmaps of graphs II","authors":"Qiang Zhang, Xuezhi Zhao","doi":"10.12775/tmna.2022.007","DOIUrl":null,"url":null,"abstract":"The index $\\mathrm{ind}(\\mathbf{F})$ of a fixed point class $\\mathbf{F}$ is a classical invariant in the Nielsen fixed point theory. In the recent paper \\cite{ZZ}, the authors introduced a new invariant $\\mathrm{ichr}(\\mathbf{F})$ called the improved characteristic, and proved that $\\mathrm{ind}(\\mathbf{F})\\leq \\mathrm{ichr}(\\mathbf{F})$ for all fixed point classes of $\\pi_1$-injective selfmaps of connected finite graphs. In this note, we show that the two homotopy invariants mentioned above are exactly the same. Since the improved characteristic is totally determined by the endomorphism of the fundamental group, we give a group-theoretical approach to compute indices of fixed point classes of graph selfmaps. As a consequence, we give a new criterion of a fixed point, which extends the one due to Gaboriau, Jaeger, Levitt and Lustig.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The index $\mathrm{ind}(\mathbf{F})$ of a fixed point class $\mathbf{F}$ is a classical invariant in the Nielsen fixed point theory. In the recent paper \cite{ZZ}, the authors introduced a new invariant $\mathrm{ichr}(\mathbf{F})$ called the improved characteristic, and proved that $\mathrm{ind}(\mathbf{F})\leq \mathrm{ichr}(\mathbf{F})$ for all fixed point classes of $\pi_1$-injective selfmaps of connected finite graphs. In this note, we show that the two homotopy invariants mentioned above are exactly the same. Since the improved characteristic is totally determined by the endomorphism of the fundamental group, we give a group-theoretical approach to compute indices of fixed point classes of graph selfmaps. As a consequence, we give a new criterion of a fixed point, which extends the one due to Gaboriau, Jaeger, Levitt and Lustig.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.