Yenal Aydın, Seçkin D. Günay, Ünsal Akdere, Çetin Taşseven
{"title":"Molecular dynamics and integral equation study of the structure and dynamics of solid and liquid magnesium phosphide","authors":"Yenal Aydın, Seçkin D. Günay, Ünsal Akdere, Çetin Taşseven","doi":"10.1080/08927022.2023.2267681","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe static structure and self-ionic transport in solid and molten magnesium phosphide (Mg3P2) are investigated by means of the molecular dynamics simulation and the hypernetted-chain theory of liquids using a newly developed semiempirical pairwise potential. Parameters of the potential were fitted to the lattice constant and bulk modulus, and then it was tested in NVE ensemble simulation at 300 K at which X-ray powder diffraction pattern was correctly reproduced. The static structure and the dynamics of self-ion transport were investigated in NPT simulations between 300 and 1500 K. The temperature evolution of the radial distribution functions, coordination numbers, mean square displacements, self-diffusion coefficients and solid–liquid transition were established at solid and liquid phases that will be informative for the thermoelectronic, optoelectronic and energy storage applications of the magnesium phosphide.KEYWORDS: Magnesium phosphidemodel potentialstatic and dynamic propertiesmolecular dynamics simulationhypernetted-chain theory AcknowledgmentsThe authors would like to acknowledge that this paper is submitted in partial fulfilment of the requirements for PhD degree at Yildiz Technical University.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":18863,"journal":{"name":"Molecular Simulation","volume":"278 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08927022.2023.2267681","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe static structure and self-ionic transport in solid and molten magnesium phosphide (Mg3P2) are investigated by means of the molecular dynamics simulation and the hypernetted-chain theory of liquids using a newly developed semiempirical pairwise potential. Parameters of the potential were fitted to the lattice constant and bulk modulus, and then it was tested in NVE ensemble simulation at 300 K at which X-ray powder diffraction pattern was correctly reproduced. The static structure and the dynamics of self-ion transport were investigated in NPT simulations between 300 and 1500 K. The temperature evolution of the radial distribution functions, coordination numbers, mean square displacements, self-diffusion coefficients and solid–liquid transition were established at solid and liquid phases that will be informative for the thermoelectronic, optoelectronic and energy storage applications of the magnesium phosphide.KEYWORDS: Magnesium phosphidemodel potentialstatic and dynamic propertiesmolecular dynamics simulationhypernetted-chain theory AcknowledgmentsThe authors would like to acknowledge that this paper is submitted in partial fulfilment of the requirements for PhD degree at Yildiz Technical University.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Molecular Simulation covers all aspects of research related to, or of importance to, molecular modelling and simulation.
Molecular Simulation brings together the most significant papers concerned with applications of simulation methods, and original contributions to the development of simulation methodology from biology, biochemistry, chemistry, engineering, materials science, medicine and physics.
The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
Molecular Simulation is of interest to all researchers using or developing simulation methods based on statistical mechanics/quantum mechanics. This includes molecular dynamics (MD, AIMD), Monte Carlo, ab initio methods related to simulation, multiscale and coarse graining methods.