Synthesis, characterization, and analysis of zinc oxide nanoparticles using varying pulsed laser ablation energies in liquid

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Tahani H. Flemban
{"title":"Synthesis, characterization, and analysis of zinc oxide nanoparticles using varying pulsed laser ablation energies in liquid","authors":"Tahani H. Flemban","doi":"10.1080/17458080.2023.2175817","DOIUrl":null,"url":null,"abstract":"Nanoparticles (NPs) find widespread applications in detectors, catalysis, optoelectronics, and medical devices, owing to their high surface-to-volume ratio and zero-dimensional confinement. However, addressing environmental concerns is crucial during the creation of novel nanostructured materials. Herein, ZnO NPs of different sizes were prepared via the pulsed laser ablation in liquid (PLAL) method at energies of 70, 90, and 130 mJ. The morphology and structural properties of the synthesized NPs were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and transmission electron microscopy. zeta-sizer and zeta-potential were used to ensure the physical stability of NPs. UV-Vis spectrophotometry measurement showed a blue shift in the band gaps with an increase in the pulsed laser energy leading to a decrease in the size of the NPs. Fourier-transform infrared spectroscopy technique confirmed the formation of ZnO NPs.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"39 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17458080.2023.2175817","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoparticles (NPs) find widespread applications in detectors, catalysis, optoelectronics, and medical devices, owing to their high surface-to-volume ratio and zero-dimensional confinement. However, addressing environmental concerns is crucial during the creation of novel nanostructured materials. Herein, ZnO NPs of different sizes were prepared via the pulsed laser ablation in liquid (PLAL) method at energies of 70, 90, and 130 mJ. The morphology and structural properties of the synthesized NPs were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and transmission electron microscopy. zeta-sizer and zeta-potential were used to ensure the physical stability of NPs. UV-Vis spectrophotometry measurement showed a blue shift in the band gaps with an increase in the pulsed laser energy leading to a decrease in the size of the NPs. Fourier-transform infrared spectroscopy technique confirmed the formation of ZnO NPs.
利用不同脉冲激光烧蚀能量在液体中合成、表征和分析氧化锌纳米颗粒
纳米粒子(NPs)由于其高表面体积比和零维限制而广泛应用于探测器,催化,光电子和医疗设备。然而,在创造新型纳米结构材料的过程中,解决环境问题是至关重要的。本文采用脉冲激光烧蚀法(PLAL)在70、90和130 mJ的能量下制备了不同尺寸的ZnO纳米粒子。利用扫描电镜、x射线能谱和透射电镜对合成的NPs进行了形貌和结构表征。采用zeta-size和zeta-potential来保证NPs的物理稳定性。紫外可见分光光度法测量显示,随着脉冲激光能量的增加,带隙出现蓝移,导致NPs尺寸减小。傅里叶变换红外光谱技术证实了ZnO NPs的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Nanoscience
Journal of Experimental Nanoscience 工程技术-材料科学:综合
CiteScore
4.10
自引率
25.00%
发文量
39
审稿时长
6.5 months
期刊介绍: Journal of Experimental Nanoscience, an international and multidisciplinary journal, provides a showcase for advances in the experimental sciences underlying nanotechnology and nanomaterials. The journal exists to bring together the most significant papers making original contributions to nanoscience in a range of fields including biology and biochemistry, physics, chemistry, chemical, electrical and mechanical engineering, materials, pharmaceuticals and medicine. The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信