Cyclic isogenies of elliptic curves over fixed quadratic fields

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Barinder Banwait, Filip Najman, Oana Padurariu
{"title":"Cyclic isogenies of elliptic curves over fixed quadratic fields","authors":"Barinder Banwait, Filip Najman, Oana Padurariu","doi":"10.1090/mcom/3894","DOIUrl":null,"url":null,"abstract":"Building on Mazur’s 1978 work on prime degree isogenies, Kenku determined in 1981 all possible cyclic isogenies of elliptic curves over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Although more than 40 years have passed, the determination of cyclic isogenies of elliptic curves over a single other number field has hitherto not been realised. In this paper we develop a procedure to assist in establishing such a determination for a given quadratic field. Executing this procedure on all quadratic fields <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot d EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mi>d</mml:mi> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt {d})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue d EndAbsoluteValue greater-than 10 Superscript 4\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>4</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|d| &gt; 10^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we obtain, conditional on the Generalised Riemann Hypothesis, the determination of cyclic isogenies of elliptic curves over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"19\"> <mml:semantics> <mml:mn>19</mml:mn> <mml:annotation encoding=\"application/x-tex\">19</mml:annotation> </mml:semantics> </mml:math> </inline-formula> quadratic fields, including <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot 213 EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mn>213</mml:mn> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt {213})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot negative 2289 EndRoot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msqrt> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2289</mml:mn> </mml:msqrt> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt {-2289})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. To make this procedure work, we determine all of the finitely many quadratic points on the modular curves <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis 125 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>125</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(125)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X 0 left-parenthesis 169 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>169</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">X_0(169)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which may be of independent interest.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"4 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3894","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Building on Mazur’s 1978 work on prime degree isogenies, Kenku determined in 1981 all possible cyclic isogenies of elliptic curves over Q \mathbb {Q} . Although more than 40 years have passed, the determination of cyclic isogenies of elliptic curves over a single other number field has hitherto not been realised. In this paper we develop a procedure to assist in establishing such a determination for a given quadratic field. Executing this procedure on all quadratic fields Q ( d ) \mathbb {Q}(\sqrt {d}) with | d | > 10 4 |d| > 10^4 we obtain, conditional on the Generalised Riemann Hypothesis, the determination of cyclic isogenies of elliptic curves over 19 19 quadratic fields, including Q ( 213 ) \mathbb {Q}(\sqrt {213}) and Q ( 2289 ) \mathbb {Q}(\sqrt {-2289}) . To make this procedure work, we determine all of the finitely many quadratic points on the modular curves X 0 ( 125 ) X_0(125) and X 0 ( 169 ) X_0(169) , which may be of independent interest.
固定二次场上椭圆曲线的循环等同性
在Mazur 1978年关于素次等同性的工作的基础上,Kenku于1981年确定了Q \mathbb {Q}上的椭圆曲线的所有可能的循环等同性。尽管40多年过去了,椭圆曲线在其他单一数场上的循环等同源性的确定至今尚未实现。在本文中,我们开发了一个程序,以帮助建立这样一个确定给定的二次域。对所有二次域Q (d) \mathbb {Q}(\sqrt {d})执行此过程,并使用| d | >10 4 |d| >10^4在广义黎曼假设的条件下,我们得到了19个二次场上椭圆曲线循环等同性的确定,包括Q (213) \mathbb {Q}(\sqrt{213})和Q(−2289)\mathbb {Q}(\sqrt{-2289})。为了使这个过程有效,我们确定了模曲线x0 (125) X_0(125)和x0 (169) X_0(169)上的所有有限多个二次点,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信