Evaluating Refrigerant Purity Characteristics: An Experimental Approach to Assess Impact on Vapor-Compression Refrigeration System Performance

IF 0.7 Q4 THERMODYNAMICS
Hayder Mohsin Ali, Saif Ali Kadhim, Osama Abd Al-Munaf Ibrahim
{"title":"Evaluating Refrigerant Purity Characteristics: An Experimental Approach to Assess Impact on Vapor-Compression Refrigeration System Performance","authors":"Hayder Mohsin Ali, Saif Ali Kadhim, Osama Abd Al-Munaf Ibrahim","doi":"10.18280/ijht.410410","DOIUrl":null,"url":null,"abstract":"This study embarks on a comprehensive exploration of the influence exerted by refrigerant purity characteristics on vapor-compression refrigeration systems performance. The investigation particularly delves into the effects on domestic applications, such as chest freezers. Deviations from the ideal refrigerant characteristics, as stipulated by the AHRI-700 standard, can provoke detrimental repercussions, including augmented power consumption and diminished coefficient of performance. In this empirical analysis, three R134a refrigerant samples, each with varying degrees of conformity to the AHRI-700 standard, were scrutinized. Sample 1 with superior characteristics, sample 2 with medium characteristics, while sample 3 with substandard characteristics. The samples were subjected to identical ambient conditions within a 145-liter chest freezer operating at a temperature of 32℃. The findings unequivocally underscored a correlation between refrigerant purity and system performance. Sample 1, with optimal characteristics, demonstrated superior performance, consuming less power (120.7 W) and delivering a higher coefficient of performance (2.33) in comparison to sample 2 (138 W, 2.07) and sample 3 (147 W, 1.93). These results emphatically emphasize the necessity of stringent refrigerant selection, predicated on purity characteristics, to best performance of vapor-compression refrigeration systems.","PeriodicalId":13995,"journal":{"name":"International Journal of Heat and Technology","volume":"69 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijht.410410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study embarks on a comprehensive exploration of the influence exerted by refrigerant purity characteristics on vapor-compression refrigeration systems performance. The investigation particularly delves into the effects on domestic applications, such as chest freezers. Deviations from the ideal refrigerant characteristics, as stipulated by the AHRI-700 standard, can provoke detrimental repercussions, including augmented power consumption and diminished coefficient of performance. In this empirical analysis, three R134a refrigerant samples, each with varying degrees of conformity to the AHRI-700 standard, were scrutinized. Sample 1 with superior characteristics, sample 2 with medium characteristics, while sample 3 with substandard characteristics. The samples were subjected to identical ambient conditions within a 145-liter chest freezer operating at a temperature of 32℃. The findings unequivocally underscored a correlation between refrigerant purity and system performance. Sample 1, with optimal characteristics, demonstrated superior performance, consuming less power (120.7 W) and delivering a higher coefficient of performance (2.33) in comparison to sample 2 (138 W, 2.07) and sample 3 (147 W, 1.93). These results emphatically emphasize the necessity of stringent refrigerant selection, predicated on purity characteristics, to best performance of vapor-compression refrigeration systems.
评估制冷剂纯度特性:一种评估对蒸汽压缩制冷系统性能影响的实验方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
22.20%
发文量
144
期刊介绍: The IJHT covers all kinds of subjects related to heat and technology, including but not limited to turbulence, combustion, cryogenics, porous media, multiphase flow, radiative transfer, heat and mass transfer, micro- and nanoscale systems, and thermophysical property measurement. The editorial board encourages the authors from all countries to submit papers on the relevant issues, especially those aimed at the practitioner as much as the academic. The papers should further our understanding of the said subjects, and make a significant original contribution to knowledge. The IJHT welcomes original research papers, technical notes and review articles on the following disciplines: Heat transfer Fluid dynamics Thermodynamics Turbulence Combustion Cryogenics Porous media Multiphase flow Radiative transfer Heat and mass transfer Micro- and nanoscale systems Thermophysical property measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信