Comparative Analysis of Longitudinal Vortex Generators and Louvered Fins in Enhancing Thermal Performance in Compact Heat Exchangers

IF 0.7 Q4 THERMODYNAMICS
Alvaro Valencia, Sebastian Muñoz
{"title":"Comparative Analysis of Longitudinal Vortex Generators and Louvered Fins in Enhancing Thermal Performance in Compact Heat Exchangers","authors":"Alvaro Valencia, Sebastian Muñoz","doi":"10.18280/ijht.410414","DOIUrl":null,"url":null,"abstract":"Compact heat exchangers equipped with flat tubes have traditionally been employed in automotive cooling systems. To augment thermal performance, louvered fins have been integrated on the air side. over recent decades, the efficacy of longitudinal vortex generators (LVG) in heat exchangers has been rigorously investigated, leading to the proposal of innovative designs characterized by their aerodynamic properties. In this study, a novel LVG design sourced from extant literature was juxtaposed against the conventional louvered fins. The shear-stress transport (SST) k-ω model was utilized to depict the turbulence. When the turbulent flow and heat transfer properties were assessed, distinct variations were observed between multiple rows of LVG and the louvered fins. Enhanced thermal performance, with a value reaching 1.3, was noted for configurations incorporating five rows of LVG arrangements at a Reynolds number of 8000. In contrast, the thermal performance of louvered fins was observed to wane with increasing Reynolds numbers, recording a performance measure of merely 1.08 at the aforementioned Reynolds number.","PeriodicalId":13995,"journal":{"name":"International Journal of Heat and Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijht.410414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Compact heat exchangers equipped with flat tubes have traditionally been employed in automotive cooling systems. To augment thermal performance, louvered fins have been integrated on the air side. over recent decades, the efficacy of longitudinal vortex generators (LVG) in heat exchangers has been rigorously investigated, leading to the proposal of innovative designs characterized by their aerodynamic properties. In this study, a novel LVG design sourced from extant literature was juxtaposed against the conventional louvered fins. The shear-stress transport (SST) k-ω model was utilized to depict the turbulence. When the turbulent flow and heat transfer properties were assessed, distinct variations were observed between multiple rows of LVG and the louvered fins. Enhanced thermal performance, with a value reaching 1.3, was noted for configurations incorporating five rows of LVG arrangements at a Reynolds number of 8000. In contrast, the thermal performance of louvered fins was observed to wane with increasing Reynolds numbers, recording a performance measure of merely 1.08 at the aforementioned Reynolds number.
纵向涡发生器与百叶翅片增强紧凑型换热器热性能的对比分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
22.20%
发文量
144
期刊介绍: The IJHT covers all kinds of subjects related to heat and technology, including but not limited to turbulence, combustion, cryogenics, porous media, multiphase flow, radiative transfer, heat and mass transfer, micro- and nanoscale systems, and thermophysical property measurement. The editorial board encourages the authors from all countries to submit papers on the relevant issues, especially those aimed at the practitioner as much as the academic. The papers should further our understanding of the said subjects, and make a significant original contribution to knowledge. The IJHT welcomes original research papers, technical notes and review articles on the following disciplines: Heat transfer Fluid dynamics Thermodynamics Turbulence Combustion Cryogenics Porous media Multiphase flow Radiative transfer Heat and mass transfer Micro- and nanoscale systems Thermophysical property measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信