{"title":"Evaluating the Performance and Exhaust Emissions of a Micro Gas Turbine Engine Fueled by Kerosene and Olive Oil Methyl Ester Blends","authors":"Abdulsattar J. Hasan, Suhad A. Rasheed","doi":"10.18280/ijht.410427","DOIUrl":null,"url":null,"abstract":"The search for renewable, affordable energy alternatives has gained momentum in light of dwindling fossil fuel reserves. Biofuels, particularly those derived from plant sources, present a viable solution to both the energy crisis and environmental degradation. This study focuses on the implementation of olive oil methyl ester (OME) biofuel in micro gas turbine engines. Biofuel blends, with volumetric OME concentrations ranging from 20% to 80% in standard kerosene, were prepared and tested on a GT 85-2-H micro gas turbine unit. The engine's performance and exhaust emissions were evaluated under two different operational parameters: constant speed and constant load. The use of an 80% OME biofuel blend resulted in an 8.7% reduction in overall efficiency and a 13.1% increase in specific fuel consumption (SFC) under an 80% load. However, it also led to a significant improvement in exhaust emissions, with reductions of 28.8%, 39%, and 33.8% recorded for carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ), respectively. Similarly, under a constant speed test at 20000 rpm, an 80% OME blend caused a 10.5% reduction in overall efficiency and a 13.6% increase in SFC. Nevertheless, the same blend improved the CO, HC, and NO x emissions by 38%, 41.4%, and 36%, respectively. The findings confirm the potential of OME as a biofuel in micro gas turbine engines, underlining its effectiveness in reducing harmful emissions. This research emphasizes the feasibility of biofuels derived from olive oil in addressing future energy demands while mitigating environmental impact.","PeriodicalId":13995,"journal":{"name":"International Journal of Heat and Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijht.410427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The search for renewable, affordable energy alternatives has gained momentum in light of dwindling fossil fuel reserves. Biofuels, particularly those derived from plant sources, present a viable solution to both the energy crisis and environmental degradation. This study focuses on the implementation of olive oil methyl ester (OME) biofuel in micro gas turbine engines. Biofuel blends, with volumetric OME concentrations ranging from 20% to 80% in standard kerosene, were prepared and tested on a GT 85-2-H micro gas turbine unit. The engine's performance and exhaust emissions were evaluated under two different operational parameters: constant speed and constant load. The use of an 80% OME biofuel blend resulted in an 8.7% reduction in overall efficiency and a 13.1% increase in specific fuel consumption (SFC) under an 80% load. However, it also led to a significant improvement in exhaust emissions, with reductions of 28.8%, 39%, and 33.8% recorded for carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ), respectively. Similarly, under a constant speed test at 20000 rpm, an 80% OME blend caused a 10.5% reduction in overall efficiency and a 13.6% increase in SFC. Nevertheless, the same blend improved the CO, HC, and NO x emissions by 38%, 41.4%, and 36%, respectively. The findings confirm the potential of OME as a biofuel in micro gas turbine engines, underlining its effectiveness in reducing harmful emissions. This research emphasizes the feasibility of biofuels derived from olive oil in addressing future energy demands while mitigating environmental impact.
期刊介绍:
The IJHT covers all kinds of subjects related to heat and technology, including but not limited to turbulence, combustion, cryogenics, porous media, multiphase flow, radiative transfer, heat and mass transfer, micro- and nanoscale systems, and thermophysical property measurement. The editorial board encourages the authors from all countries to submit papers on the relevant issues, especially those aimed at the practitioner as much as the academic. The papers should further our understanding of the said subjects, and make a significant original contribution to knowledge. The IJHT welcomes original research papers, technical notes and review articles on the following disciplines: Heat transfer Fluid dynamics Thermodynamics Turbulence Combustion Cryogenics Porous media Multiphase flow Radiative transfer Heat and mass transfer Micro- and nanoscale systems Thermophysical property measurement.