Unveiling the electron configuration-dependent oxygen evolution activity of 2D porous Sr-substituted LaFeO3 perovskite through microwave shock

Guangyu Fang, Kaisi Liu, Miao Fan, Jinglin Xian, Zhiao Wu, Liyun Wei, Haoran Tian, Huiyu Jiang, Weilin Xu, Huanyu Jin, Jun Wan
{"title":"Unveiling the electron configuration-dependent oxygen evolution activity of 2D porous Sr-substituted LaFeO3 perovskite through microwave shock","authors":"Guangyu Fang,&nbsp;Kaisi Liu,&nbsp;Miao Fan,&nbsp;Jinglin Xian,&nbsp;Zhiao Wu,&nbsp;Liyun Wei,&nbsp;Haoran Tian,&nbsp;Huiyu Jiang,&nbsp;Weilin Xu,&nbsp;Huanyu Jin,&nbsp;Jun Wan","doi":"10.1002/cnl2.94","DOIUrl":null,"url":null,"abstract":"<p>Developing an efficient and stable oxygen evolution reaction (OER) catalyst is beneficial in various energy conversion and storage applications for achieving the “Carbon Neutrality” goal. Among the iron-based perovskite oxides (AFeO<sub>3</sub>), LaFeO<sub>3</sub> stands out as a preferred catalyst for electrocatalytic OER due to its exceptional selectivity in oxygen bonding at the A-site. The introduction of A-site substitution and controlled morphological engineering in perovskite structures has proven effective in enhancing the electrical conductivity and intrinsic catalytic activity. Nevertheless, the conventional A-site substitution approach often involves prolonged high-temperature calcination, leading to the agglomeration of nanostructures, particularly in two-dimensional (2D) porous configurations. Herein, we introduce a novel method for synthesizing 2D porous LaFeO<sub>3</sub> perovskite with A-site Sr substitution using microwave shock. This microwave technique capitalizes on the benefits of transient heating and cooling, enabling simultaneous construction of 2D porous morphology and precise regulation of Sr substitution in one step. By conducting theoretical simulations of the electron configuration and analysis of crystal structure, we unveil the impact of Sr substitution on the OER activity of 2D porous LaFeO<sub>3</sub>. The synthesized La<sub>0.2</sub>Sr<sub>0.8</sub>FeO<sub>3</sub> (LSFO-8) catalyst exhibits an exceptional overpotential of 339 mV at 10 mA cm<sup>−2</sup> and a small Tafel slope of 56.84 mV dec<sup>−1</sup> in alkaline electrolyte. This investigation provides a fresh perspective for the design and engineering of electronic configuration in highly active 2D perovskite materials.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.94","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing an efficient and stable oxygen evolution reaction (OER) catalyst is beneficial in various energy conversion and storage applications for achieving the “Carbon Neutrality” goal. Among the iron-based perovskite oxides (AFeO3), LaFeO3 stands out as a preferred catalyst for electrocatalytic OER due to its exceptional selectivity in oxygen bonding at the A-site. The introduction of A-site substitution and controlled morphological engineering in perovskite structures has proven effective in enhancing the electrical conductivity and intrinsic catalytic activity. Nevertheless, the conventional A-site substitution approach often involves prolonged high-temperature calcination, leading to the agglomeration of nanostructures, particularly in two-dimensional (2D) porous configurations. Herein, we introduce a novel method for synthesizing 2D porous LaFeO3 perovskite with A-site Sr substitution using microwave shock. This microwave technique capitalizes on the benefits of transient heating and cooling, enabling simultaneous construction of 2D porous morphology and precise regulation of Sr substitution in one step. By conducting theoretical simulations of the electron configuration and analysis of crystal structure, we unveil the impact of Sr substitution on the OER activity of 2D porous LaFeO3. The synthesized La0.2Sr0.8FeO3 (LSFO-8) catalyst exhibits an exceptional overpotential of 339 mV at 10 mA cm−2 and a small Tafel slope of 56.84 mV dec−1 in alkaline electrolyte. This investigation provides a fresh perspective for the design and engineering of electronic configuration in highly active 2D perovskite materials.

Abstract Image

通过微波冲击揭示二维多孔锶取代LaFeO3钙钛矿的电子构型依赖的析氧活性
开发一种高效、稳定的析氧反应(OER)催化剂,有助于实现各种能量转换和存储应用,从而实现“碳中和”目标。在铁基钙钛矿氧化物(AFeO - 3)中,AFeO - 3因其在a位的氧键的特殊选择性而成为电催化OER的首选催化剂。在钙钛矿结构中引入A位取代和控制形态工程已被证明在提高电导率和本征催化活性方面是有效的。然而,传统的A位取代方法通常涉及长时间的高温煅烧,导致纳米结构的团聚,特别是在二维(2D)多孔结构中。本文介绍了一种利用微波激波合成具有a位Sr取代的二维多孔LaFeO - 3钙钛矿的新方法。这种微波技术利用了瞬态加热和冷却的优点,可以在一步中同时构建二维多孔形态和精确调节Sr取代。通过电子组态的理论模拟和晶体结构分析,揭示了Sr取代对二维多孔LaFeO 3 OER活性的影响。合成的La 0.2 Sr 0.8 feo3 (LSFO‐8)催化剂在10 mA cm−2下的过电位为339 mV,在碱性电解质中的塔菲尔斜率很小,为56.84 mV dec−1。该研究为高活性二维钙钛矿材料的电子构型设计和工程提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信