Internal aggregation models with multiple sources and obstacle problems on Sierpiński gaskets

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Uta Freiberg, Nico Heizmann, Robin Kaiser, Ecaterina Sava-Huss
{"title":"Internal aggregation models with multiple sources and obstacle problems on Sierpiński gaskets","authors":"Uta Freiberg, Nico Heizmann, Robin Kaiser, Ecaterina Sava-Huss","doi":"10.4171/jfg/141","DOIUrl":null,"url":null,"abstract":"We consider the doubly infinite Sierpiński gasket graph $\\mathsf{SG}\\_0$, rescale it by factor $2^{-n}$, and on the rescaled graphs $\\mathsf{SG}\\_n=2^{-n}\\mathsf{SG}0$, for every $n\\in\\mathbb{N}$, we investigate the limit shape of three aggregation models with initial configuration $\\sigma\\_n$ of particles supported on multiple vertices. The models under consideration are: divisible sandpile in which the excess mass is distributed among the vertices until each vertex is stable and has mass less or equal to one, internal DLA in which particles do random walks until finding an empty site, and rotor aggregation in which particles perform deterministic counterparts of random walks until finding an empty site. We denote by $\\mathsf{SG}=\\text{cl}(\\bigcup{n=0}^{\\infty}\\mathsf{SG}\\_n)$ the infinite Sierpiński gasket, which is a closed subset of $\\mathbb{R}^2$, for which $\\mathsf{SG}\\_n$ represents the level-$n$ approximating graph, and we consider a continuous function $\\sigma\\colon \\mathsf{SG}\\to\\mathbb{N}$. For $\\sigma$ we solve the obstacle problem, and we describe the noncoincidence set $D\\subset \\mathsf{SG}$ as the solution of a free boundary problem on the fractal $\\mathsf{SG}$. If the discrete particle configurations $\\sigma\\_n$ on the approximating graphs $\\mathsf{SG}\\_n$ converge pointwise to the continuous function $\\sigma$ on the limit set $\\mathsf{SG}$, we prove that, as $n\\to\\infty$, the scaling limits of the three aforementioned models on $\\mathsf{SG}\\_n$ starting with initial particle configuration $\\sigma\\_n$ converge to the deterministic solution $D$ of the free boundary problem on the limit set $\\mathsf{SG}\\subset\\mathbb{R}^2$. For $D$ we also investigate boundary regularity properties.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jfg/141","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the doubly infinite Sierpiński gasket graph $\mathsf{SG}\_0$, rescale it by factor $2^{-n}$, and on the rescaled graphs $\mathsf{SG}\_n=2^{-n}\mathsf{SG}0$, for every $n\in\mathbb{N}$, we investigate the limit shape of three aggregation models with initial configuration $\sigma\_n$ of particles supported on multiple vertices. The models under consideration are: divisible sandpile in which the excess mass is distributed among the vertices until each vertex is stable and has mass less or equal to one, internal DLA in which particles do random walks until finding an empty site, and rotor aggregation in which particles perform deterministic counterparts of random walks until finding an empty site. We denote by $\mathsf{SG}=\text{cl}(\bigcup{n=0}^{\infty}\mathsf{SG}\_n)$ the infinite Sierpiński gasket, which is a closed subset of $\mathbb{R}^2$, for which $\mathsf{SG}\_n$ represents the level-$n$ approximating graph, and we consider a continuous function $\sigma\colon \mathsf{SG}\to\mathbb{N}$. For $\sigma$ we solve the obstacle problem, and we describe the noncoincidence set $D\subset \mathsf{SG}$ as the solution of a free boundary problem on the fractal $\mathsf{SG}$. If the discrete particle configurations $\sigma\_n$ on the approximating graphs $\mathsf{SG}\_n$ converge pointwise to the continuous function $\sigma$ on the limit set $\mathsf{SG}$, we prove that, as $n\to\infty$, the scaling limits of the three aforementioned models on $\mathsf{SG}\_n$ starting with initial particle configuration $\sigma\_n$ converge to the deterministic solution $D$ of the free boundary problem on the limit set $\mathsf{SG}\subset\mathbb{R}^2$. For $D$ we also investigate boundary regularity properties.
Sierpiński垫片上具有多源和障碍问题的内部聚集模型
我们考虑双无限Sierpiński垫片图$\mathsf{SG}\_0$,通过因子$2^{-n}$对其进行缩放,并在缩放后的图$\mathsf{SG}\_n=2^{-n}\mathsf{SG}0$上,对于每一个$n\in\mathbb{N}$,我们研究了具有多个顶点支持粒子的初始构型$\sigma\_n$的三种聚集模型的极限形状。考虑的模型是:可分沙堆,其中多余的质量分布在各个顶点之间,直到每个顶点稳定且质量小于或等于1;内部DLA,粒子随机行走直到找到一个空点;转子聚集,粒子执行随机行走的确定性对等体,直到找到一个空点。我们用$\mathsf{SG}=\text{cl}(\bigcup{n=0}^{\infty}\mathsf{SG}\_n)$表示无限的Sierpiński垫片,它是$\mathbb{R}^2$的一个封闭子集,其中$\mathsf{SG}\_n$表示水平- $n$逼近图,我们考虑一个连续函数$\sigma\colon \mathsf{SG}\to\mathbb{N}$。对于$\sigma$,我们解决了障碍问题,并将不符合集$D\subset \mathsf{SG}$描述为分形$\mathsf{SG}$上的自由边界问题的解。如果近似图$\mathsf{SG}\_n$上的离散粒子组态$\sigma\_n$点向收敛于极限集$\mathsf{SG}$上的连续函数$\sigma$,我们证明,如$n\to\infty$,上述三种模型在$\mathsf{SG}\_n$上从初始粒子构型$\sigma\_n$开始的尺度极限收敛于极限集$\mathsf{SG}\subset\mathbb{R}^2$上自由边界问题的确定性解$D$。对于$D$,我们也研究了边界正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信