Influence of Variable Swirl On Emissions in a Non-Premixed Fuel-Flexible Burner At Elevated Ambient Conditions

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Daniel Pugh, Philip Bowen, Rukshan Navaratne, Burak Goktepe, Anthony Giles, Agustin Valera Medina, Steven Morris, Robin Vivoli
{"title":"Influence of Variable Swirl On Emissions in a Non-Premixed Fuel-Flexible Burner At Elevated Ambient Conditions","authors":"Daniel Pugh, Philip Bowen, Rukshan Navaratne, Burak Goktepe, Anthony Giles, Agustin Valera Medina, Steven Morris, Robin Vivoli","doi":"10.1115/1.4063786","DOIUrl":null,"url":null,"abstract":"Abstract As alternative fuels are designated for future energy applications, flexible combustor designs require considerable development to ensure stable operation with reduced NOx emissions. A non-premixed variable swirl burner was used to experimentally appraise changes in NO production pathways, with CH4 NH3, and H2 flames, alongside intermediate fuel blends. Maintaining an equivalent thermal power and flame temperature between fuels, preheated reactants (500 K) were supplied to the burner, with parametric changes made to pressure (1 - 6 bara) and swirl number (0.8 - 2.0). NO production was characterized, alongside variations in flame structure and topology, with a correlation demonstrated for exhaust emissions. NO production was shown to be sensitive to combustor pressure, providing an expected increase for CH4 and H2 flames. Emission profiles from both NH3 and H2 flames are shown to be significantly augmented by a change in swirl number. As NH3 fractions were increased in the H2 blend, a decaying trend in NO emissions was observed with an increase in pressure, and as a function of mixture ratio. However, this behaviour was markedly augmented by a change in swirl number and suggests that further reductions may be possible at increased pressure. At the low swirl/high pressure condition the NH3/H2 blend outperformed pure H2, providing lower NO concentrations. Emissions data were normalised using the traditional dry/O2 correction, alongside mass scaled by thermal power, with a comparison provided. The corresponding differences in emission formation pathways were investigated, alongside high-speed OH* chemiluminescence to further elucidate findings.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063786","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract As alternative fuels are designated for future energy applications, flexible combustor designs require considerable development to ensure stable operation with reduced NOx emissions. A non-premixed variable swirl burner was used to experimentally appraise changes in NO production pathways, with CH4 NH3, and H2 flames, alongside intermediate fuel blends. Maintaining an equivalent thermal power and flame temperature between fuels, preheated reactants (500 K) were supplied to the burner, with parametric changes made to pressure (1 - 6 bara) and swirl number (0.8 - 2.0). NO production was characterized, alongside variations in flame structure and topology, with a correlation demonstrated for exhaust emissions. NO production was shown to be sensitive to combustor pressure, providing an expected increase for CH4 and H2 flames. Emission profiles from both NH3 and H2 flames are shown to be significantly augmented by a change in swirl number. As NH3 fractions were increased in the H2 blend, a decaying trend in NO emissions was observed with an increase in pressure, and as a function of mixture ratio. However, this behaviour was markedly augmented by a change in swirl number and suggests that further reductions may be possible at increased pressure. At the low swirl/high pressure condition the NH3/H2 blend outperformed pure H2, providing lower NO concentrations. Emissions data were normalised using the traditional dry/O2 correction, alongside mass scaled by thermal power, with a comparison provided. The corresponding differences in emission formation pathways were investigated, alongside high-speed OH* chemiluminescence to further elucidate findings.
高环境条件下可变涡流对非预混燃料柔性燃烧器排放的影响
随着替代燃料被指定为未来的能源应用,灵活的燃烧室设计需要大量的开发,以确保稳定运行,减少氮氧化物排放。使用非预混可变涡流燃烧器,实验评估了CH4 NH3和H2火焰以及中间燃料混合物在NO生成途径中的变化。为了保持燃料之间的热功率和火焰温度相等,将预热过的反应物(500 K)提供给燃烧器,并对压力(1 - 6 bara)和涡流数(0.8 - 2.0)进行参数改变。NO的产生与火焰结构和拓扑结构的变化一起被表征,并与废气排放证明了相关性。NO的产生对燃烧室压力很敏感,这为CH4和H2火焰提供了预期的增加。随着旋流数的变化,NH3和H2火焰的发射曲线明显增强。随着H2混合物中NH3组分的增加,NO排放量随压力的增加和混合物比例的变化呈衰减趋势。然而,随着旋流数的变化,这种行为明显增强,这表明在压力增加的情况下,进一步降低是可能的。在低旋流/高压条件下,NH3/H2混合物的性能优于纯H2,提供更低的NO浓度。使用传统的干/氧校正对排放数据进行归一化,同时使用热电进行质量缩放,并提供比较。研究了相应的发射形成途径的差异,以及高速OH*化学发光,以进一步阐明研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
20.00%
发文量
292
审稿时长
2.0 months
期刊介绍: The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信