Evaluation of an ultrashort pulsed laser robot system for flexible and large-area micromachining

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daniel Franz, Yongting Yang, Luis Michel, Cemal Esen, Ralf Hellmann
{"title":"Evaluation of an ultrashort pulsed laser robot system for flexible and large-area micromachining","authors":"Daniel Franz, Yongting Yang, Luis Michel, Cemal Esen, Ralf Hellmann","doi":"10.2351/7.0001171","DOIUrl":null,"url":null,"abstract":"We report for the first time on the realization, characterization and application of an ultrashort pulsed laser robot system for flexible and large-area 2D and 3D laser micromachining with 6 articulated axes. To characterize the dynamic positioning of the laser beam during and after axes movement, CMOS image sensors were integrated into the beam path. A method introduced for the alignment of the optical axes allows a reduction of the deviations in laser beam positioning to less than 141.8 ± 92.9 μm within a 110° rotation range of axis 4. In addition, a high laser beam positioning repeatability of less than 102.2 μm is demonstrated over a total period of 14 h for a movement of axis 5 within a range of 0° to 90°. Initial laser cutting, laser structuring and laser marking applications on automotive dashboards and glass substrates are presented for flexible and large area 2D and 3D manufacturing. By applying a special laser cutting strategy for processing AF 32 eco thin glass, high cutting quality is achieved with a taper of up to 96.3% without the generation of cracks, demonstrating the innovative potential of the high-precision laser robot system. Nonetheless, different identified inherent influences of each axis 1–5 during robot axis movement demand for an innovative beam stabilization concept to achieve high precision in laser beam positioning.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001171","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report for the first time on the realization, characterization and application of an ultrashort pulsed laser robot system for flexible and large-area 2D and 3D laser micromachining with 6 articulated axes. To characterize the dynamic positioning of the laser beam during and after axes movement, CMOS image sensors were integrated into the beam path. A method introduced for the alignment of the optical axes allows a reduction of the deviations in laser beam positioning to less than 141.8 ± 92.9 μm within a 110° rotation range of axis 4. In addition, a high laser beam positioning repeatability of less than 102.2 μm is demonstrated over a total period of 14 h for a movement of axis 5 within a range of 0° to 90°. Initial laser cutting, laser structuring and laser marking applications on automotive dashboards and glass substrates are presented for flexible and large area 2D and 3D manufacturing. By applying a special laser cutting strategy for processing AF 32 eco thin glass, high cutting quality is achieved with a taper of up to 96.3% without the generation of cracks, demonstrating the innovative potential of the high-precision laser robot system. Nonetheless, different identified inherent influences of each axis 1–5 during robot axis movement demand for an innovative beam stabilization concept to achieve high precision in laser beam positioning.
柔性大面积微加工超短脉冲激光机器人系统评价
本文首次报道了一种用于柔性、大面积、六轴关节激光微加工的超短脉冲激光机器人系统的实现、表征和应用。为了表征激光束在轴向运动期间和运动后的动态定位,将CMOS图像传感器集成到光束路径中。介绍了一种光轴对准方法,在轴4旋转110°范围内,将激光束定位偏差减小到141.8±92.9 μm以内。此外,在0°到90°的范围内,在14 h的总周期内,5轴的运动具有小于102.2 μm的高激光束定位重复性。介绍了在汽车仪表板和玻璃基板上的初始激光切割,激光结构和激光打标应用,用于灵活和大面积的2D和3D制造。通过应用特殊的激光切割策略来加工AF 32生态薄玻璃,实现了高切割质量,锥度高达96.3%而不会产生裂纹,展示了高精度激光机器人系统的创新潜力。然而,在机器人轴线运动过程中,每个轴1-5的不同固有影响需要一个创新的光束稳定概念,以实现高精度的激光束定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信