On local distance antimagic labeling of graphs

IF 1 4区 数学 Q1 MATHEMATICS
Adarsh Kumar Handa, Aloysius Godinho, Tarkeshwar Singh
{"title":"On local distance antimagic labeling of graphs","authors":"Adarsh Kumar Handa, Aloysius Godinho, Tarkeshwar Singh","doi":"10.1080/09728600.2023.2256811","DOIUrl":null,"url":null,"abstract":"Let G=(V,E) be a graph of order n and let f:V→{1,2…,n} be a bijection. For every vertex v∈V, we define the weight of the vertex v as w(v)=∑x∈N(v)f(x) where N(v) is the open neighborhood of the vertex v. The bijection f is said to be a local distance antimagic labeling of G if w(u)≠w(v) for every pair of adjacent vertices u,v∈V. The local distance antimagic labeling f defines a proper vertex coloring of the graph G, where the vertex v is assigned the color w(v). We define the local distance antimagic chromatic number χld(G) to be the minimum number of colors taken over all colorings induced by local distance antimagic labelings of G. In this paper we obtain the local distance antimagic labelings for several families of graphs including the path Pn, the cycle Cn, the wheel graph Wn, friendship graph Fn, the corona product of graphs G°Km¯, complete multipartite graph and some special types of the caterpillars. We also find upper bounds for the local distance antimagic chromatic number for these families of graphs.","PeriodicalId":48497,"journal":{"name":"AKCE International Journal of Graphs and Combinatorics","volume":"33 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AKCE International Journal of Graphs and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09728600.2023.2256811","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G=(V,E) be a graph of order n and let f:V→{1,2…,n} be a bijection. For every vertex v∈V, we define the weight of the vertex v as w(v)=∑x∈N(v)f(x) where N(v) is the open neighborhood of the vertex v. The bijection f is said to be a local distance antimagic labeling of G if w(u)≠w(v) for every pair of adjacent vertices u,v∈V. The local distance antimagic labeling f defines a proper vertex coloring of the graph G, where the vertex v is assigned the color w(v). We define the local distance antimagic chromatic number χld(G) to be the minimum number of colors taken over all colorings induced by local distance antimagic labelings of G. In this paper we obtain the local distance antimagic labelings for several families of graphs including the path Pn, the cycle Cn, the wheel graph Wn, friendship graph Fn, the corona product of graphs G°Km¯, complete multipartite graph and some special types of the caterpillars. We also find upper bounds for the local distance antimagic chromatic number for these families of graphs.
图的局部距离反幻标记
设G=(V,E)为n阶图,设f:V→{1,2…,n}为双射。对于每个顶点v∈v,我们定义顶点v的权值为w(v)=∑x∈N(v)f(x),其中N(v)是顶点v的开邻域。对于每一对相邻顶点u,v∈v,如果w(u)≠w(v),则双射f被称为G的局部距离反奇异标记。局部距离反魔术标记f定义了图G的适当顶点着色,其中顶点v被赋予颜色w(v)。我们定义了局部距离反幻色数χld(G)为由G的局部距离反幻标记所引起的所有着色所占颜色的最小数量。本文得到了若干图族的局部距离反幻标记,包括路径Pn、循环Cn、车轮图Wn、友谊图Fn、图G°Km¯的冕积、完全多部图和一些特殊类型的毛虫。我们还找到了这些图族的局部距离反幻色数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
40
审稿时长
28 weeks
期刊介绍: AKCE International Journal of Graphs and Combinatorics is devoted to publication of standard original research papers in Combinatorial Mathematics and related areas. The fields covered by the journal include: Graphs and hypergraphs, Network theory, Combinatorial optimization, Coding theory, Block designs, Combinatorial geometry, Matroid theory, Logic, Computing, Neural networks and any related topics. Each volume will consist of three issues to be published in the months of April, August and December every year. Contribution presented to the journal can be Full-length article, Review article, Short communication and about a conference. The journal will also publish proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standard of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信