Global existence and non-uniqueness for the Cauchy problem associated to 3D Navier–Stokes equations perturbed by transport noise

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED
Umberto Pappalettera
{"title":"Global existence and non-uniqueness for the Cauchy problem associated to 3D Navier–Stokes equations perturbed by transport noise","authors":"Umberto Pappalettera","doi":"10.1007/s40072-023-00318-5","DOIUrl":null,"url":null,"abstract":"Abstract We show global existence and non-uniqueness of probabilistically strong, analytically weak solutions of the three-dimensional Navier–Stokes equations perturbed by Stratonovich transport noise. We can prescribe either: (i) any divergence-free, square integrable intial condition; or (ii) the kinetic energy of solutions up to a stopping time, which can be chosen arbitrarily large with high probability. Solutions enjoy some Sobolev regularity in space but are not Leray–Hopf.","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40072-023-00318-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We show global existence and non-uniqueness of probabilistically strong, analytically weak solutions of the three-dimensional Navier–Stokes equations perturbed by Stratonovich transport noise. We can prescribe either: (i) any divergence-free, square integrable intial condition; or (ii) the kinetic energy of solutions up to a stopping time, which can be chosen arbitrarily large with high probability. Solutions enjoy some Sobolev regularity in space but are not Leray–Hopf.
输运噪声扰动下三维Navier-Stokes方程Cauchy问题的全局存在性和非唯一性
摘要给出了受stronovich输运噪声扰动的三维Navier-Stokes方程的概率强、解析弱解的全局存在性和非唯一性。我们可以规定:(i)任何无散度,平方可积的初始条件;或(ii)解在停止时间前的动能,可以大概率任意选择。解在空间中具有索博列夫正则性,但不是勒雷-霍普夫正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
13.30%
发文量
54
期刊介绍: Stochastics and Partial Differential Equations: Analysis and Computations publishes the highest quality articles presenting significantly new and important developments in the SPDE theory and applications. SPDE is an active interdisciplinary area at the crossroads of stochastic anaylsis, partial differential equations and scientific computing. Statistical physics, fluid dynamics, financial modeling, nonlinear filtering, super-processes, continuum physics and, recently, uncertainty quantification are important contributors to and major users of the theory and practice of SPDEs. The journal is promoting synergetic activities between the SPDE theory, applications, and related large scale computations. The journal also welcomes high quality articles in fields strongly connected to SPDE such as stochastic differential equations in infinite-dimensional state spaces or probabilistic approaches to solving deterministic PDEs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信