{"title":"Density regression and uncertainty quantification with Bayesian deep noise neural networks","authors":"Daiwei Zhang, Tianci Liu, Jian Kang","doi":"10.1002/sta4.604","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) models have achieved state‐of‐the‐art predictive accuracy in a wide range of applications. However, it remains a challenging task to accurately quantify the uncertainty in DNN predictions, especially those of continuous outcomes. To this end, we propose the Bayesian deep noise neural network (B‐DeepNoise), which generalizes standard Bayesian DNNs by extending the random noise variable from the output layer to all hidden layers. Our model is capable of approximating highly complex predictive density functions and fully learn the possible random variation in the outcome variables. For posterior computation, we provide a closed‐form Gibbs sampling algorithm that circumvents tuning‐intensive Metropolis–Hastings methods. We establish a recursive representation of the predictive density and perform theoretical analysis on the predictive variance. Through extensive experiments, we demonstrate the superiority of B‐DeepNoise over existing methods in terms of density estimation and uncertainty quantification accuracy. A neuroimaging application is included to show our model's usefulness in scientific studies.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"57 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sta4.604","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep neural network (DNN) models have achieved state‐of‐the‐art predictive accuracy in a wide range of applications. However, it remains a challenging task to accurately quantify the uncertainty in DNN predictions, especially those of continuous outcomes. To this end, we propose the Bayesian deep noise neural network (B‐DeepNoise), which generalizes standard Bayesian DNNs by extending the random noise variable from the output layer to all hidden layers. Our model is capable of approximating highly complex predictive density functions and fully learn the possible random variation in the outcome variables. For posterior computation, we provide a closed‐form Gibbs sampling algorithm that circumvents tuning‐intensive Metropolis–Hastings methods. We establish a recursive representation of the predictive density and perform theoretical analysis on the predictive variance. Through extensive experiments, we demonstrate the superiority of B‐DeepNoise over existing methods in terms of density estimation and uncertainty quantification accuracy. A neuroimaging application is included to show our model's usefulness in scientific studies.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.