The Hardest LL(k) Language

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Mikhail Mrykhin, Alexander Okhotin
{"title":"The Hardest LL(k) Language","authors":"Mikhail Mrykhin, Alexander Okhotin","doi":"10.1142/s012905412344001x","DOIUrl":null,"url":null,"abstract":"This paper establishes an analogue of Greibach’s hardest language theorem (“The hardest context-free language”, SIAM J. Comp., 1973, http://dx.doi.org/10.1137/0202025 ) for the classical family of LL([Formula: see text]) languages. The first result is that there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, to which every language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form can be reduced by a homomorphism, that is, [Formula: see text] if and only if [Formula: see text]. Then it is shown that this statement does not hold for the full class of LL([Formula: see text]) languages. The other hardest language theorem is then established in the following form: there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, such that, for every language [Formula: see text] defined by an LL([Formula: see text]) grammar, with [Formula: see text], there exists a homomorphism [Formula: see text], for which [Formula: see text] if and only if [Formula: see text] [Formula: see text] [Formula: see text], where [Formula: see text] is a new symbol. The results lead to two robust language families: the closures of the languages defined by LL(1) grammars in the Greibach normal form under inverse homomorphisms and under inverse finite transductions.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s012905412344001x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper establishes an analogue of Greibach’s hardest language theorem (“The hardest context-free language”, SIAM J. Comp., 1973, http://dx.doi.org/10.1137/0202025 ) for the classical family of LL([Formula: see text]) languages. The first result is that there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, to which every language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form can be reduced by a homomorphism, that is, [Formula: see text] if and only if [Formula: see text]. Then it is shown that this statement does not hold for the full class of LL([Formula: see text]) languages. The other hardest language theorem is then established in the following form: there is a language [Formula: see text] defined by an LL(1) grammar in the Greibach normal form, such that, for every language [Formula: see text] defined by an LL([Formula: see text]) grammar, with [Formula: see text], there exists a homomorphism [Formula: see text], for which [Formula: see text] if and only if [Formula: see text] [Formula: see text] [Formula: see text], where [Formula: see text] is a new symbol. The results lead to two robust language families: the closures of the languages defined by LL(1) grammars in the Greibach normal form under inverse homomorphisms and under inverse finite transductions.
最难的英语语言
本文建立了一个类似于Greibach最难语言定理(“最难上下文无关语言”,SIAM J. Comp., 1973, http://dx.doi.org/10.1137/0202025)的经典LL(公式:见文本)语言族。第一个结果是存在一种由Greibach范式的LL(1)语法定义的语言[公式:见文],而每一种由Greibach范式的LL(1)语法定义的语言[公式:见文]都可以被同态约简,即当且仅当[公式:见文]。然后证明,这一说法并不适用于LL([公式:见文本])语言的整个类。然后其他困难的语言定理是成立于以下形式:有一个语言(公式:看到文本)定义为一种LL(1)文法Greibach范式,这样,每一个语言(公式:看到文本)定义为一个会([公式:看到文本])语法,(公式:看到文本),存在一个同态(公式:看到文本),因为(公式:看到文本)当且仅当[公式:看到文本][公式:看到文本][公式:看到文本],在[公式:看到文本]是一个新的象征。这些结果导致了两个鲁棒语系:在逆同态和逆有限转导下,由LL(1)语法在Greibach范式下定义的语言闭包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信