{"title":"Direct Poisson neural networks: learning non-symplectic mechanical systems","authors":"Martin Šípka, Michal Pavelka, Oğul Esen, M Grmela","doi":"10.1088/1751-8121/ad0803","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we present neural networks learning mechanical systems that are both symplectic
(for instance particle mechanics) and non-symplectic (for instance rotating rigid body). Mechanical
systems have Hamiltonian evolution, which consists of two building blocks: a Poisson bracket and an
energy functional. We feed a set of snapshots of a Hamiltonian system to our neural network models
which then find both the two building blocks. In particular, the models distinguish between symplectic
systems (with non-degenerate Poisson brackets) and non-symplectic systems (degenerate brackets).
In contrast with earlier works, our approach does not assume any further a priori information about
the dynamics except its Hamiltonianity, and it returns Poisson brackets that satisfy Jacobi identity.
Finally, the models indicate whether a system of equations is Hamiltonian or not.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"11 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this paper, we present neural networks learning mechanical systems that are both symplectic
(for instance particle mechanics) and non-symplectic (for instance rotating rigid body). Mechanical
systems have Hamiltonian evolution, which consists of two building blocks: a Poisson bracket and an
energy functional. We feed a set of snapshots of a Hamiltonian system to our neural network models
which then find both the two building blocks. In particular, the models distinguish between symplectic
systems (with non-degenerate Poisson brackets) and non-symplectic systems (degenerate brackets).
In contrast with earlier works, our approach does not assume any further a priori information about
the dynamics except its Hamiltonianity, and it returns Poisson brackets that satisfy Jacobi identity.
Finally, the models indicate whether a system of equations is Hamiltonian or not.