Ultra-quantum coherent states in a single finite quantum system

Apostol Vourdas
{"title":"Ultra-quantum coherent states in a single finite quantum system","authors":"Apostol Vourdas","doi":"10.1088/1751-8121/ad0438","DOIUrl":null,"url":null,"abstract":"Abstract A set of n coherent states is introduced in a quantum system with d -dimensional Hilbert space H ( d ). It is shown that they resolve the identity, and also have a discrete isotropy property. A finite cyclic group acts on the set of these coherent states, and partitions it into orbits. A n -tuple representation of arbitrary states in H ( d ), analogous to the Bargmann representation, is defined. There are two other important properties of these coherent states which make them ‘ultra-quantum’. The first property is related to the Grothendieck formalism which studies the ‘edge’ of the Hilbert space and quantum formalisms. Roughly speaking the Grothendieck theorem considers a ‘classical’ quadratic form <?CDATA ${\\mathfrak C}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">C</mml:mi> </mml:mrow> </mml:mrow> </mml:math> that uses complex numbers in the unit disc, and a ‘quantum’ quadratic form <?CDATA ${\\mathfrak Q}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:math> that uses vectors in the unit ball of the Hilbert space. It shows that if <?CDATA ${\\mathfrak C}\\unicode{x2A7D} 1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">C</mml:mi> </mml:mrow> </mml:mrow> <mml:mtext>⩽</mml:mtext> <mml:mn>1</mml:mn> </mml:math> , the corresponding <?CDATA ${\\mathfrak Q}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:math> might take values greater than 1, up to the complex Grothendieck constant <?CDATA $k_\\mathrm{G}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>k</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">G</mml:mi> </mml:mrow> </mml:msub> </mml:math> . <?CDATA ${\\mathfrak Q}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">Q</mml:mi> </mml:mrow> </mml:mrow> </mml:math> related to these coherent states is shown to take values in the ‘Grothendieck region’ <?CDATA $(1,k_\\mathrm{G})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>k</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">G</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> , which is classically forbidden in the sense that <?CDATA ${\\mathfrak C}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"fraktur\">C</mml:mi> </mml:mrow> </mml:mrow> </mml:math> does not take values in it. The second property complements this, showing that these coherent states violate logical Bell-like inequalities (which for a single quantum system are quantum versions of the Frechet probabilistic inequalities). In this sense also, our coherent states are deep into the quantum region.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A set of n coherent states is introduced in a quantum system with d -dimensional Hilbert space H ( d ). It is shown that they resolve the identity, and also have a discrete isotropy property. A finite cyclic group acts on the set of these coherent states, and partitions it into orbits. A n -tuple representation of arbitrary states in H ( d ), analogous to the Bargmann representation, is defined. There are two other important properties of these coherent states which make them ‘ultra-quantum’. The first property is related to the Grothendieck formalism which studies the ‘edge’ of the Hilbert space and quantum formalisms. Roughly speaking the Grothendieck theorem considers a ‘classical’ quadratic form C that uses complex numbers in the unit disc, and a ‘quantum’ quadratic form Q that uses vectors in the unit ball of the Hilbert space. It shows that if C 1 , the corresponding Q might take values greater than 1, up to the complex Grothendieck constant k G . Q related to these coherent states is shown to take values in the ‘Grothendieck region’ ( 1 , k G ) , which is classically forbidden in the sense that C does not take values in it. The second property complements this, showing that these coherent states violate logical Bell-like inequalities (which for a single quantum system are quantum versions of the Frechet probabilistic inequalities). In this sense also, our coherent states are deep into the quantum region.
单一有限量子系统中的超量子相干态
在具有d维希尔伯特空间H (d)的量子系统中引入n个相干态集。结果表明,它们能分解恒等式,并具有离散各向同性。有限循环群作用于这些相干态的集合,并将其划分为轨道。定义了H (d)中任意状态的n元表示,类似于巴格曼表示。这些相干态还有另外两个重要的特性,使它们成为“超量子”。第一个性质与格罗滕迪克形式主义有关,它研究希尔伯特空间的“边缘”和量子形式主义。粗略地说,Grothendieck定理考虑了一个“经典”二次型C,它在单位圆盘中使用复数,以及一个“量子”二次型Q,它在希尔伯特空间的单位球中使用向量。结果表明,当C < 1时,对应的Q值可能大于1,直至复格罗滕迪克常数k G。与这些相干态相关的Q在“格罗滕迪克区域”(1,k G)中有值,这在经典上是被禁止的,因为C在该区域中没有值。第二个性质补充了这一点,表明这些相干状态违反逻辑贝尔不等式(对于单个量子系统来说,这是Frechet概率不等式的量子版本)。在这个意义上,我们的相干态也深入到量子区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信