Jacobi Rational Operational Approach for Time-Fractional Sub-Diffusion Equation on a Semi-Infinite Domain

IF 0.6 Q3 MATHEMATICS
R. M. Hafez, Y. H. Youssri, A. G. Atta
{"title":"Jacobi Rational Operational Approach for Time-Fractional Sub-Diffusion Equation on a Semi-Infinite Domain","authors":"R. M. Hafez, Y. H. Youssri, A. G. Atta","doi":"10.37256/cm.4420233594","DOIUrl":null,"url":null,"abstract":"In this study, we employ a rational Jacobi collocation technique to effectively address linear time-fractional subdiffusion and reaction sub-diffusion equations. The semi-analytic approximation solution, in this case, represents the spatial and temporal variables as a series of rational Jacobi polynomials. Subsequently, we apply the operational collocation method to convert the target equations into a system of algebraic equations. A comprehensive investigation into the convergence properties of the dual series expansion employed in this approximation is conducted, demonstrating the robustness of the numerical method put forth. To illustrate the method's accuracy and practicality, we present several numerical examples. The advantages of this method are: high accuracy, efficiency, applicability, and high rate of convergence.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420233594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we employ a rational Jacobi collocation technique to effectively address linear time-fractional subdiffusion and reaction sub-diffusion equations. The semi-analytic approximation solution, in this case, represents the spatial and temporal variables as a series of rational Jacobi polynomials. Subsequently, we apply the operational collocation method to convert the target equations into a system of algebraic equations. A comprehensive investigation into the convergence properties of the dual series expansion employed in this approximation is conducted, demonstrating the robustness of the numerical method put forth. To illustrate the method's accuracy and practicality, we present several numerical examples. The advantages of this method are: high accuracy, efficiency, applicability, and high rate of convergence.
半无限域上时间分数次扩散方程的Jacobi有理运算方法
在这项研究中,我们采用了一个合理的雅可比配置技术来有效地解决线性时间分数次扩散和反应次扩散方程。在这种情况下,半解析近似解将空间和时间变量表示为一系列有理雅可比多项式。随后,我们应用运算配置法将目标方程转化为代数方程组。对该近似中所采用的对偶级数展开的收敛性进行了全面的研究,证明了所提出的数值方法的鲁棒性。为了说明该方法的准确性和实用性,我们给出了几个数值算例。该方法具有精度高、效率高、适用性强、收敛速度快等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信