Cansu Almaz, Recep Serdar Kara, Markéta Miháliková, Svatopluk Matula
{"title":"Implications of surfactant application on soil hydrology, macronutrients, and organic carbon fractions: An integrative field study","authors":"Cansu Almaz, Recep Serdar Kara, Markéta Miháliková, Svatopluk Matula","doi":"10.17221/88/2023-swr","DOIUrl":null,"url":null,"abstract":"This study investigates the effects of repeated applications of the non-ionic soil surfactant H2Flo (ICL-SF Inc., Israel) on the soil water content, hydraulic conductivity, nutrient distribution, and organic carbon fractions (OCFs) in non-hydrophobic loamy sand soils under subsurface drip irrigation. Our results indicate that H2Flo treatment reduces both saturated and unsaturated hydraulic conductivity while promoting the uniform irrigation distribution, consistent with previous findings on surfactants’ effects on sandy soils. An increase in soil pH levels, organic carbon content, and extractable magnesium, calcium, and potassium was observed in treated soils, with elevated levels of potassium permanganate oxidizable organic carbon (POXC) implying accelerated decomposition rates. Notably, a positive linear relationship was found between POXC and the increased NO<sub>3</sub><sup>–</sup>-N content of treated soils, suggesting induced conditions of nitrification. However, the carbon fractions water-soluble organic carbon (C<sub>ws</sub>) and hot water-soluble organic carbon (C<sub>hws</sub>) remained quantitatively unchanged, even though they exhibited a positive linear relationship with the soil’s hydraulic conductivity. The study highlights the crucial role of monitoring changes in OCFs and nutrient dynamics after surfactant application to optimize soil organic matter utilization and chemical fertilizer management.","PeriodicalId":48982,"journal":{"name":"Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/88/2023-swr","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of repeated applications of the non-ionic soil surfactant H2Flo (ICL-SF Inc., Israel) on the soil water content, hydraulic conductivity, nutrient distribution, and organic carbon fractions (OCFs) in non-hydrophobic loamy sand soils under subsurface drip irrigation. Our results indicate that H2Flo treatment reduces both saturated and unsaturated hydraulic conductivity while promoting the uniform irrigation distribution, consistent with previous findings on surfactants’ effects on sandy soils. An increase in soil pH levels, organic carbon content, and extractable magnesium, calcium, and potassium was observed in treated soils, with elevated levels of potassium permanganate oxidizable organic carbon (POXC) implying accelerated decomposition rates. Notably, a positive linear relationship was found between POXC and the increased NO3–-N content of treated soils, suggesting induced conditions of nitrification. However, the carbon fractions water-soluble organic carbon (Cws) and hot water-soluble organic carbon (Chws) remained quantitatively unchanged, even though they exhibited a positive linear relationship with the soil’s hydraulic conductivity. The study highlights the crucial role of monitoring changes in OCFs and nutrient dynamics after surfactant application to optimize soil organic matter utilization and chemical fertilizer management.
期刊介绍:
An international peer-reviewed journal published under the auspices of the Czech Academy of Agricultural Sciences and financed by the Ministry of Agriculture of the Czech Republic. Published since 2006.
Thematic: original papers, short communications and critical reviews from all fields of science and engineering related to soil and water and their interactions in natural and man-modified landscapes, with a particular focus on agricultural land use. The fields encompassed include, but are not limited to, the basic and applied soil science, soil hydrology, irrigation and drainage of lands, hydrology, management and revitalisation of small water streams and small water reservoirs, including fishponds, soil erosion research and control, drought and flood control, wetland restoration and protection, surface and ground water protection in therms of their quantity and quality.