Regularity of minimal surfaces near quadratic cones

IF 5.7 1区 数学 Q1 MATHEMATICS
Nick Edelen, Luca Spolaor
{"title":"Regularity of minimal surfaces near quadratic cones","authors":"Nick Edelen, Luca Spolaor","doi":"10.4007/annals.2023.198.3.2","DOIUrl":null,"url":null,"abstract":"Hardt-Simon proved that every area-minimizing hypercone $\\mathbf{C}$ having only an isolated singularity fits into a foliation of $\\mathbb{R}^{n+1}$ by smooth, area-minimizing hypersurfaces asymptotic to $\\mathbf{C}$. In this paper we prove that if a stationary $n$-varifold $M$ in the unit ball $B_1 \\subset \\mathbb{R}^{n+1}$ lies sufficiently close to a minimizing quadratic cone (for example, the Simons' cone $\\mathbf{C}^{3,3}$), then $\\mathrm{spt} M \\cap B_{1/2}$ is a $C^{1,\\alpha}$ perturbation of either the cone itself, or some leaf of its associated foliation. In particular, we show that singularities modeled on these cones determine the local structure not only of $M$, but of any nearby minimal surface. Our result also implies the Bernstein-type result of Simon-Solomon, which characterizes area-minimizing hypersurfaces asymptotic to a quadratic cone as either the cone itself, or some leaf of the foliation.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"681 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4007/annals.2023.198.3.2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Hardt-Simon proved that every area-minimizing hypercone $\mathbf{C}$ having only an isolated singularity fits into a foliation of $\mathbb{R}^{n+1}$ by smooth, area-minimizing hypersurfaces asymptotic to $\mathbf{C}$. In this paper we prove that if a stationary $n$-varifold $M$ in the unit ball $B_1 \subset \mathbb{R}^{n+1}$ lies sufficiently close to a minimizing quadratic cone (for example, the Simons' cone $\mathbf{C}^{3,3}$), then $\mathrm{spt} M \cap B_{1/2}$ is a $C^{1,\alpha}$ perturbation of either the cone itself, or some leaf of its associated foliation. In particular, we show that singularities modeled on these cones determine the local structure not only of $M$, but of any nearby minimal surface. Our result also implies the Bernstein-type result of Simon-Solomon, which characterizes area-minimizing hypersurfaces asymptotic to a quadratic cone as either the cone itself, or some leaf of the foliation.
二次锥附近最小曲面的正则性
hart - simon证明了每一个只有孤立奇点的面积最小化超锥$\mathbf{C}$,都符合一个光滑的、渐近于$\mathbf{C}$的面积最小化超曲面的叶状$\mathbb{R}^{n+1}$。在本文中,我们证明了如果在单位球$B_1 \subset \mathbb{R}^{n+1}$中的一个平稳的$n$ -变分$M$足够靠近一个最小化的二次锥(例如,Simons锥$\mathbf{C}^{3,3}$),那么$\mathrm{spt} M \cap B_{1/2}$是锥本身的一个$C^{1,\alpha}$摄动,或者是其相关叶状的一些叶状。特别地,我们证明了在这些锥体上建模的奇点不仅决定了$M$的局部结构,而且决定了任何附近最小表面的局部结构。我们的结果也暗示了Simon-Solomon的bernstein型结果,该结果将渐近于二次锥的面积最小化超曲面刻画为锥本身或叶状叶的某些叶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信