{"title":"Regularity of minimal surfaces near quadratic cones","authors":"Nick Edelen, Luca Spolaor","doi":"10.4007/annals.2023.198.3.2","DOIUrl":null,"url":null,"abstract":"Hardt-Simon proved that every area-minimizing hypercone $\\mathbf{C}$ having only an isolated singularity fits into a foliation of $\\mathbb{R}^{n+1}$ by smooth, area-minimizing hypersurfaces asymptotic to $\\mathbf{C}$. In this paper we prove that if a stationary $n$-varifold $M$ in the unit ball $B_1 \\subset \\mathbb{R}^{n+1}$ lies sufficiently close to a minimizing quadratic cone (for example, the Simons' cone $\\mathbf{C}^{3,3}$), then $\\mathrm{spt} M \\cap B_{1/2}$ is a $C^{1,\\alpha}$ perturbation of either the cone itself, or some leaf of its associated foliation. In particular, we show that singularities modeled on these cones determine the local structure not only of $M$, but of any nearby minimal surface. Our result also implies the Bernstein-type result of Simon-Solomon, which characterizes area-minimizing hypersurfaces asymptotic to a quadratic cone as either the cone itself, or some leaf of the foliation.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"681 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4007/annals.2023.198.3.2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
Hardt-Simon proved that every area-minimizing hypercone $\mathbf{C}$ having only an isolated singularity fits into a foliation of $\mathbb{R}^{n+1}$ by smooth, area-minimizing hypersurfaces asymptotic to $\mathbf{C}$. In this paper we prove that if a stationary $n$-varifold $M$ in the unit ball $B_1 \subset \mathbb{R}^{n+1}$ lies sufficiently close to a minimizing quadratic cone (for example, the Simons' cone $\mathbf{C}^{3,3}$), then $\mathrm{spt} M \cap B_{1/2}$ is a $C^{1,\alpha}$ perturbation of either the cone itself, or some leaf of its associated foliation. In particular, we show that singularities modeled on these cones determine the local structure not only of $M$, but of any nearby minimal surface. Our result also implies the Bernstein-type result of Simon-Solomon, which characterizes area-minimizing hypersurfaces asymptotic to a quadratic cone as either the cone itself, or some leaf of the foliation.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.