{"title":"COVARIANT QUANTUM FIELDS VIA LORENTZ GROUP REPRESENTATION OF WEYL OPERATORS","authors":"Radhakrishnan Balu","doi":"10.1142/9789811275999_0002","DOIUrl":null,"url":null,"abstract":"The building blocks of Hudson-Parthasarathy quantum stochastic calculus start with Weyl operators on a symmetric Fock space. To realize a relativistically covariant version of the calculus we construct representations of Poincare group in terms of Weyl operators on suitably constructed, Bosonic or Fermionic based on the mass and spin of the fundamental particle, Fock spaces. We proceed by describing the orbits of homogeneous Lorentz group on R4 and build fiber bundle representations of Poincare group induced from the stabilizer subgroups (little groups) and build the Boson Fock space of the Hilbert space formed from the sections of the bundle. Our Weyl operators are constructed on symmetric Fock space of this space and the corresponding annihilation, creation, and conservation operators are synthesized in the usual fashion in relativistic theories for space-like, time-like, and light-like fields. We achieve this by constructing transitive systems of imprimitivity (second-quantized SI), which are dynamical systems with trajectories dense in the configuration space, by induced representations. We provide the details of the field operators for the case of massive Bosons as the rest are similar in construction and indicate the ways to construct adapted processes paving way for building covariant quantum stochastic calculus.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"682 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811275999_0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
The building blocks of Hudson-Parthasarathy quantum stochastic calculus start with Weyl operators on a symmetric Fock space. To realize a relativistically covariant version of the calculus we construct representations of Poincare group in terms of Weyl operators on suitably constructed, Bosonic or Fermionic based on the mass and spin of the fundamental particle, Fock spaces. We proceed by describing the orbits of homogeneous Lorentz group on R4 and build fiber bundle representations of Poincare group induced from the stabilizer subgroups (little groups) and build the Boson Fock space of the Hilbert space formed from the sections of the bundle. Our Weyl operators are constructed on symmetric Fock space of this space and the corresponding annihilation, creation, and conservation operators are synthesized in the usual fashion in relativistic theories for space-like, time-like, and light-like fields. We achieve this by constructing transitive systems of imprimitivity (second-quantized SI), which are dynamical systems with trajectories dense in the configuration space, by induced representations. We provide the details of the field operators for the case of massive Bosons as the rest are similar in construction and indicate the ways to construct adapted processes paving way for building covariant quantum stochastic calculus.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.