Total Positivity is a Quantum Phenomenon: The Grassmannian Case

IF 2 4区 数学 Q1 MATHEMATICS
Stéphane Launois, Tom Lenagan, Brendan Nolan
{"title":"Total Positivity is a Quantum Phenomenon: The Grassmannian Case","authors":"Stéphane Launois, Tom Lenagan, Brendan Nolan","doi":"10.1090/memo/1448","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to establish a deep link between the totally nonnegative grassmannian and the quantum grassmannian. More precisely, under the assumption that the deformation parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is transcendental, we show that “quantum positroids” are completely prime ideals in the quantum grassmannian <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript q Baseline left-parenthesis upper G Subscript m n Baseline left-parenthesis double-struck upper F right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\mathcal O}_q(G_{mn}(\\mathbb {F}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a consequence, we obtain that torus-invariant prime ideals in the quantum grassmannian are generated by polynormal sequences of quantum Plücker coordinates and give a combinatorial description of these generating sets. We also give a topological description of the poset of torus-invariant prime ideals in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript q Baseline left-parenthesis upper G Subscript m n Baseline left-parenthesis double-struck upper F right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\mathcal O}_q(G_{mn}(\\mathbb {F}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and prove a version of the orbit method for torus-invariant objects. Finally, we construct separating Ore sets for all torus-invariant primes in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript q Baseline left-parenthesis upper G Subscript m n Baseline left-parenthesis double-struck upper F right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\mathcal O}_q(G_{mn}(\\mathbb {F}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The latter is the first step in the Brown-Goodearl strategy to establish the orbit method for (quantum) grassmannians.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"231 ","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1448","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

The main aim of this paper is to establish a deep link between the totally nonnegative grassmannian and the quantum grassmannian. More precisely, under the assumption that the deformation parameter q q is transcendental, we show that “quantum positroids” are completely prime ideals in the quantum grassmannian O q ( G m n ( F ) ) {\mathcal O}_q(G_{mn}(\mathbb {F})) . As a consequence, we obtain that torus-invariant prime ideals in the quantum grassmannian are generated by polynormal sequences of quantum Plücker coordinates and give a combinatorial description of these generating sets. We also give a topological description of the poset of torus-invariant prime ideals in O q ( G m n ( F ) ) {\mathcal O}_q(G_{mn}(\mathbb {F})) , and prove a version of the orbit method for torus-invariant objects. Finally, we construct separating Ore sets for all torus-invariant primes in O q ( G m n ( F ) ) {\mathcal O}_q(G_{mn}(\mathbb {F})) . The latter is the first step in the Brown-Goodearl strategy to establish the orbit method for (quantum) grassmannians.
总正性是一种量子现象:格拉斯曼案例
本文的主要目的是建立完全非负格拉斯曼与量子格拉斯曼之间的深层联系。更准确地说,在形变参数q q是超越的假设下,我们证明了“量子正子类”在量子格拉斯曼态O q(G mn (F)) {\mathcal O}_q(G_{mn}(\mathbb {F}))中是完全素数理想。由此,我们得到了由量子plpl克尔坐标的多正态序列生成的量子格拉斯曼的环面不变素理想,并给出了这些生成集的组合描述。我们还给出了O q(G mn (F)) {\mathcal O}_q(G_{mn}(\mathbb {F}))中环面不变素理想的偏序集的拓扑描述,并证明了环面不变对象的轨道方法的一个版本。最后,我们构造了O q(G mn (F)) {\mathcal O}_q(G_{mn}(\mathbb {F}))中所有环不变素数的分离Ore集。后者是Brown-Goodearl策略中建立(量子)格拉斯曼人轨道方法的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信