{"title":"Total Positivity is a Quantum Phenomenon: The Grassmannian Case","authors":"Stéphane Launois, Tom Lenagan, Brendan Nolan","doi":"10.1090/memo/1448","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to establish a deep link between the totally nonnegative grassmannian and the quantum grassmannian. More precisely, under the assumption that the deformation parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is transcendental, we show that “quantum positroids” are completely prime ideals in the quantum grassmannian <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript q Baseline left-parenthesis upper G Subscript m n Baseline left-parenthesis double-struck upper F right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\mathcal O}_q(G_{mn}(\\mathbb {F}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a consequence, we obtain that torus-invariant prime ideals in the quantum grassmannian are generated by polynormal sequences of quantum Plücker coordinates and give a combinatorial description of these generating sets. We also give a topological description of the poset of torus-invariant prime ideals in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript q Baseline left-parenthesis upper G Subscript m n Baseline left-parenthesis double-struck upper F right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\mathcal O}_q(G_{mn}(\\mathbb {F}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and prove a version of the orbit method for torus-invariant objects. Finally, we construct separating Ore sets for all torus-invariant primes in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript q Baseline left-parenthesis upper G Subscript m n Baseline left-parenthesis double-struck upper F right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>q</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">F</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{\\mathcal O}_q(G_{mn}(\\mathbb {F}))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The latter is the first step in the Brown-Goodearl strategy to establish the orbit method for (quantum) grassmannians.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5
Abstract
The main aim of this paper is to establish a deep link between the totally nonnegative grassmannian and the quantum grassmannian. More precisely, under the assumption that the deformation parameter qq is transcendental, we show that “quantum positroids” are completely prime ideals in the quantum grassmannian Oq(Gmn(F)){\mathcal O}_q(G_{mn}(\mathbb {F})). As a consequence, we obtain that torus-invariant prime ideals in the quantum grassmannian are generated by polynormal sequences of quantum Plücker coordinates and give a combinatorial description of these generating sets. We also give a topological description of the poset of torus-invariant prime ideals in Oq(Gmn(F)){\mathcal O}_q(G_{mn}(\mathbb {F})), and prove a version of the orbit method for torus-invariant objects. Finally, we construct separating Ore sets for all torus-invariant primes in Oq(Gmn(F)){\mathcal O}_q(G_{mn}(\mathbb {F})). The latter is the first step in the Brown-Goodearl strategy to establish the orbit method for (quantum) grassmannians.