$k$-regular sequences to extension functors and local cohomology modules

IF 0.4 4区 数学 Q4 MATHEMATICS
Sajjad Arda, Seadat Ollah Faramarzi, Khadijeh Ahmadi Amoli
{"title":"$k$-regular sequences to extension functors and local cohomology modules","authors":"Sajjad Arda, Seadat Ollah Faramarzi, Khadijeh Ahmadi Amoli","doi":"10.2996/kmj46302","DOIUrl":null,"url":null,"abstract":"In this paper we generalize the Zero Divisor Conjecture and Rigidity Theorem for $k$-regular sequence. For this purpose for any $k$-regular $M$-sequence ${x_1},...,{x_n}$ we prove that if $\\dim{\\rm Tor}_2^R({\\frac{R}{{({{x_1},...,{x_n}} )}},M}) \\le k$, then $\\dim{\\rm Tor}_i^R({\\frac{R}{{({{x_1},...,{x_n}})}},M}) \\le k$, for all $i \\ge 1$. Also we show that if $\\dim{\\rm Ext}_R^{n + 2}({\\frac{R}{{({{x_1},...,{x_n}})}},M}) \\le k$, then $\\dim{\\rm Ext}_R^{i}({\\frac{R}{{({{x_1},...,{x_n}})}},M}) \\le k$, for all integers $i \\ge 0$ $({i \\ne n})$.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/kmj46302","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we generalize the Zero Divisor Conjecture and Rigidity Theorem for $k$-regular sequence. For this purpose for any $k$-regular $M$-sequence ${x_1},...,{x_n}$ we prove that if $\dim{\rm Tor}_2^R({\frac{R}{{({{x_1},...,{x_n}} )}},M}) \le k$, then $\dim{\rm Tor}_i^R({\frac{R}{{({{x_1},...,{x_n}})}},M}) \le k$, for all $i \ge 1$. Also we show that if $\dim{\rm Ext}_R^{n + 2}({\frac{R}{{({{x_1},...,{x_n}})}},M}) \le k$, then $\dim{\rm Ext}_R^{i}({\frac{R}{{({{x_1},...,{x_n}})}},M}) \le k$, for all integers $i \ge 0$ $({i \ne n})$.
扩展函子和局部上同模的正则序列
本文推广了$k$ -正则序列的零因子猜想和刚性定理。为了这个目的,对于任何$k$ -正则$M$ -序列${x_1},...,{x_n}$,我们证明如果$\dim{\rm Tor}_2^R({\frac{R}{{({{x_1},...,{x_n}} )}},M}) \le k$,那么$\dim{\rm Tor}_i^R({\frac{R}{{({{x_1},...,{x_n}})}},M}) \le k$,对于所有$i \ge 1$。我们也证明了如果$\dim{\rm Ext}_R^{n + 2}({\frac{R}{{({{x_1},...,{x_n}})}},M}) \le k$,那么$\dim{\rm Ext}_R^{i}({\frac{R}{{({{x_1},...,{x_n}})}},M}) \le k$,对于所有整数$i \ge 0$$({i \ne n})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信