{"title":"On the computation of modular forms on noncongruence subgroups","authors":"David Berghaus, Hartmut Monien, Danylo Radchenko","doi":"10.1090/mcom/3903","DOIUrl":null,"url":null,"abstract":"We present two approaches that can be used to compute modular forms on noncongruence subgroups. The first approach uses Hejhal’s method for which we improve the arbitrary precision solving techniques so that the algorithm becomes about up to two orders of magnitude faster in practical computations. This allows us to obtain high precision numerical estimates of the Fourier coefficients from which the algebraic expressions can be identified using the LLL algorithm. The second approach is restricted to genus zero subgroups and uses efficient methods to compute the Belyi map from which the modular forms can be constructed.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"67 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3903","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We present two approaches that can be used to compute modular forms on noncongruence subgroups. The first approach uses Hejhal’s method for which we improve the arbitrary precision solving techniques so that the algorithm becomes about up to two orders of magnitude faster in practical computations. This allows us to obtain high precision numerical estimates of the Fourier coefficients from which the algebraic expressions can be identified using the LLL algorithm. The second approach is restricted to genus zero subgroups and uses efficient methods to compute the Belyi map from which the modular forms can be constructed.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.