Albert S. Berahas, Frank E. Curtis, Michael J. O'Neill, Daniel P. Robinson
{"title":"A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear-Equality-Constrained Optimization with Rank-Deficient Jacobians","authors":"Albert S. Berahas, Frank E. Curtis, Michael J. O'Neill, Daniel P. Robinson","doi":"10.1287/moor.2021.0154","DOIUrl":null,"url":null,"abstract":"A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear-equality-constrained optimization problems in which the objective function is defined by an expectation. The algorithmic structure of the proposed method is based on a step decomposition strategy that is known in the literature to be widely effective in practice, wherein each search direction is computed as the sum of a normal step (toward linearized feasibility) and a tangential step (toward objective decrease in the null space of the constraint Jacobian). However, the proposed method is unique from others in the literature in that it both allows the use of stochastic objective gradient estimates and possesses convergence guarantees even in the setting in which the constraint Jacobians may be rank-deficient. The results of numerical experiments demonstrate that the algorithm offers superior performance when compared with popular alternatives. Funding: This material is based upon work supported by the U.S. National Science Foundation’s Division of Computing and Communication Foundations under award [CF-1740796], by the Office of Naval Research under award [N00014-21-1-2532], and by the National Science Foundation under award [2030859] to the Computing Research Association for the CIFellows Project.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"20 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/moor.2021.0154","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 20
Abstract
A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear-equality-constrained optimization problems in which the objective function is defined by an expectation. The algorithmic structure of the proposed method is based on a step decomposition strategy that is known in the literature to be widely effective in practice, wherein each search direction is computed as the sum of a normal step (toward linearized feasibility) and a tangential step (toward objective decrease in the null space of the constraint Jacobian). However, the proposed method is unique from others in the literature in that it both allows the use of stochastic objective gradient estimates and possesses convergence guarantees even in the setting in which the constraint Jacobians may be rank-deficient. The results of numerical experiments demonstrate that the algorithm offers superior performance when compared with popular alternatives. Funding: This material is based upon work supported by the U.S. National Science Foundation’s Division of Computing and Communication Foundations under award [CF-1740796], by the Office of Naval Research under award [N00014-21-1-2532], and by the National Science Foundation under award [2030859] to the Computing Research Association for the CIFellows Project.
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.