Optimizing Resource Efficiencies for Scalable Full-Stack Quantum Computers

IF 9.3 Q1 PHYSICS, APPLIED
Marco Fellous-Asiani, Jing Hao Chai, Yvain Thonnart, Hui Khoon Ng, Robert S. Whitney, Alexia Auffèves
{"title":"Optimizing Resource Efficiencies for Scalable Full-Stack Quantum Computers","authors":"Marco Fellous-Asiani, Jing Hao Chai, Yvain Thonnart, Hui Khoon Ng, Robert S. Whitney, Alexia Auffèves","doi":"10.1103/prxquantum.4.040319","DOIUrl":null,"url":null,"abstract":"In the race to build scalable quantum computers, minimizing the resource consumption of their full stack to achieve a target performance becomes crucial. It mandates a synergy of fundamental physics and engineering: the former for the microscopic aspects of computing performance and the latter for the macroscopic resource consumption. For this, we propose a holistic methodology dubbed metric noise resource (MNR) that is able to quantify and optimize all aspects of the full-stack quantum computer, bringing together concepts from quantum physics (e.g., noise on the qubits), quantum information (e.g., computing architecture and type of error correction), and enabling technologies (e.g., cryogenics, control electronics, and wiring). This holistic approach allows us to define and study resource efficiencies as ratios between performance and resource cost. As a proof of concept, we use MNR to minimize the power consumption of a full-stack quantum computer, performing noisy or fault-tolerant computing with a target performance for the task of interest. Comparing this with a classical processor performing the same task, we identify a quantum energy advantage in regimes of parameters distinct from the commonly considered quantum computational advantage. This provides a previously overlooked practical argument for building quantum computers. While our illustration uses highly idealized parameters inspired by superconducting qubits with concatenated error correction, the methodology is universal—it applies to other qubits and error-correcting codes—and it provides experimenters with guidelines to build energy-efficient quantum computers. In some regimes of high energy consumption, it can reduce this consumption by orders of magnitude. Overall, our methodology lays the theoretical foundation for resource-efficient quantum technologies.7 MoreReceived 29 November 2022Accepted 31 July 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040319Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasEnergy-efficient infrastructureQuantum algorithmsQuantum benchmarkingQuantum computationQuantum engineeringQuantum error correctionQuantum gatesQuantum information architectures & platformsQuantum information processingQuantum softwareQuantum Information, Science & TechnologyInterdisciplinary Physics","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.4.040319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 11

Abstract

In the race to build scalable quantum computers, minimizing the resource consumption of their full stack to achieve a target performance becomes crucial. It mandates a synergy of fundamental physics and engineering: the former for the microscopic aspects of computing performance and the latter for the macroscopic resource consumption. For this, we propose a holistic methodology dubbed metric noise resource (MNR) that is able to quantify and optimize all aspects of the full-stack quantum computer, bringing together concepts from quantum physics (e.g., noise on the qubits), quantum information (e.g., computing architecture and type of error correction), and enabling technologies (e.g., cryogenics, control electronics, and wiring). This holistic approach allows us to define and study resource efficiencies as ratios between performance and resource cost. As a proof of concept, we use MNR to minimize the power consumption of a full-stack quantum computer, performing noisy or fault-tolerant computing with a target performance for the task of interest. Comparing this with a classical processor performing the same task, we identify a quantum energy advantage in regimes of parameters distinct from the commonly considered quantum computational advantage. This provides a previously overlooked practical argument for building quantum computers. While our illustration uses highly idealized parameters inspired by superconducting qubits with concatenated error correction, the methodology is universal—it applies to other qubits and error-correcting codes—and it provides experimenters with guidelines to build energy-efficient quantum computers. In some regimes of high energy consumption, it can reduce this consumption by orders of magnitude. Overall, our methodology lays the theoretical foundation for resource-efficient quantum technologies.7 MoreReceived 29 November 2022Accepted 31 July 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040319Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasEnergy-efficient infrastructureQuantum algorithmsQuantum benchmarkingQuantum computationQuantum engineeringQuantum error correctionQuantum gatesQuantum information architectures & platformsQuantum information processingQuantum softwareQuantum Information, Science & TechnologyInterdisciplinary Physics

Abstract Image

优化可扩展全栈量子计算机的资源效率
在构建可扩展量子计算机的竞赛中,最小化其全栈的资源消耗以实现目标性能变得至关重要。它要求基础物理和工程的协同作用:前者用于计算性能的微观方面,后者用于宏观的资源消耗。为此,我们提出了一种称为度量噪声资源(MNR)的整体方法,该方法能够量化和优化全栈量子计算机的各个方面,将量子物理(例如,量子比特上的噪声),量子信息(例如,计算架构和纠错类型)和使能技术(例如,低温,控制电子和布线)的概念结合在一起。这种整体方法允许我们将资源效率定义为性能和资源成本之间的比率。作为概念验证,我们使用MNR来最小化全堆栈量子计算机的功耗,对感兴趣的任务执行具有目标性能的噪声或容错计算。将其与执行相同任务的经典处理器进行比较,我们确定了与通常认为的量子计算优势不同的参数体系中的量子能量优势。这为构建量子计算机提供了一个以前被忽视的实际论据。虽然我们的说明使用了高度理想化的参数,灵感来自超导量子比特和串联纠错,但这种方法是通用的——它适用于其他量子比特和纠错码——它为实验者提供了构建节能量子计算机的指导方针。在一些高能耗的制度下,它可以将这种消耗降低几个数量级。总体而言,我们的方法为资源高效量子技术奠定了理论基础根据知识共享署名4.0国际许可协议,美国物理学会doi:https://doi.org/10.1103/PRXQuantum.4.040319Published。这项工作的进一步分发必须保持作者的归属和已发表文章的标题,期刊引用和DOI。发表于美国物理学会物理学科标题(PhySH)研究领域节能基础设施量子算法量子基准量子计算量子工程量子纠错量子门量子信息架构与平台量子信息处理量子软件量子信息科学与技术跨学科物理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信