On certain regular nicely distance-balanced graphs

Pub Date : 2023-06-13 DOI:10.33044/revuma.2709
Blas Fernandez, Štefko Miklavič, Safet Penjić
{"title":"On certain regular nicely distance-balanced graphs","authors":"Blas Fernandez, Štefko Miklavič, Safet Penjić","doi":"10.33044/revuma.2709","DOIUrl":null,"url":null,"abstract":"A connected graph $\\G$ is called {\\em nicely distance--balanced}, whenever there exists a positive integer $\\gamma=\\gamma(\\G)$, such that for any two adjacent vertices $u,v$ of $\\G$ there are exactly $\\gamma$ vertices of $\\G$ which are closer to $u$ than to $v$, and exactly $\\gamma$ vertices of $\\G$ which are closer to $v$ than to $u$. Let $d$ denote the diameter of $\\G$. It is known that $d \\le \\gamma$, and that nicely distance-balanced graphs with $\\gamma = d$ are precisely complete graphs and cycles of length $2d$ or $2d+1$. In this paper we classify regular nicely distance-balanced graphs with $\\gamma=d+1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33044/revuma.2709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A connected graph $\G$ is called {\em nicely distance--balanced}, whenever there exists a positive integer $\gamma=\gamma(\G)$, such that for any two adjacent vertices $u,v$ of $\G$ there are exactly $\gamma$ vertices of $\G$ which are closer to $u$ than to $v$, and exactly $\gamma$ vertices of $\G$ which are closer to $v$ than to $u$. Let $d$ denote the diameter of $\G$. It is known that $d \le \gamma$, and that nicely distance-balanced graphs with $\gamma = d$ are precisely complete graphs and cycles of length $2d$ or $2d+1$. In this paper we classify regular nicely distance-balanced graphs with $\gamma=d+1$.
分享
查看原文
在某些规则的距离平衡图上
连通图$\G$被称为{\em距离平衡},只要存在一个正整数$\gamma=\gamma(\G)$,使得对于$\G$的任意两个相邻的点$u,v$,恰好有$\gamma$的点$\G$比$v$更接近$u$,恰好有$\gamma$的点$\G$比$u$更接近$v$。设$d$表示$\G$的直径。众所周知,$d \le \gamma$和具有$\gamma = d$的距离平衡图是完全图和长度为$2d$或$2d+1$的循环。本文用$\gamma=d+1$对正则距离平衡图进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信