Characterisation of all integral circulant graphs with multiplicative divisor sets and few eigenvalues

Pub Date : 2023-09-22 DOI:10.1007/s10801-023-01259-x
J. W. Sander, T. Sander
{"title":"Characterisation of all integral circulant graphs with multiplicative divisor sets and few eigenvalues","authors":"J. W. Sander, T. Sander","doi":"10.1007/s10801-023-01259-x","DOIUrl":null,"url":null,"abstract":"Abstract We present a method which in principal allows to characterise all integral circulant graphs with multiplicative divisor set having a spectrum, i.e. the set of distinct eigenvalues, of any given size. We shall exemplify the method for spectra of up to four eigenvalues, also reproving some known results for three eigenvalues along the way. In particular we show that given any integral circulant graph of arbitrary order n with multiplicative divisor set and precisely four distinct eigenvalues, n necessarily is either a prime power or the product of two prime powers with explicitly given simply structured divisor set and set of eigenvalues in both cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01259-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We present a method which in principal allows to characterise all integral circulant graphs with multiplicative divisor set having a spectrum, i.e. the set of distinct eigenvalues, of any given size. We shall exemplify the method for spectra of up to four eigenvalues, also reproving some known results for three eigenvalues along the way. In particular we show that given any integral circulant graph of arbitrary order n with multiplicative divisor set and precisely four distinct eigenvalues, n necessarily is either a prime power or the product of two prime powers with explicitly given simply structured divisor set and set of eigenvalues in both cases.
分享
查看原文
具有乘式除数集和少量特征值的所有积分循环图的刻画
摘要本文提出了一种方法,该方法原则上允许描述所有具有谱的具有不同特征值集的整数循环图,即任意给定大小的谱。我们将举例说明最多四个特征值的谱的方法,同时也改进了一些已知的三个特征值的结果。特别地,我们证明了给定任意阶n的整数循环图,它具有相乘的除数集和恰好四个不同的特征值,在这两种情况下,n必然是一个素数幂或两个素数幂的乘积,具有显式给出的简单结构除数集和特征值集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信