{"title":"Nanofluid turbulent flow inside a duct equipped with disturber with new shape","authors":"Bandar Almohsen","doi":"10.1002/zamm.202200201","DOIUrl":null,"url":null,"abstract":"Abstract To intensify the productivity of solar systems, researchers utilized a perforated tape with obstacles in a circular tube filled with nanomaterial. ANSYS FLUENT was used to simulate the results, combining K‐ε approach and a homogeneous approach for the nanomaterial. Grid size was optimized to reduce computation costs, and the accuracy of the simulation was verified using previously published data. The simulations considered the height of the disturber and the revolution as parameters. The insertion of the disturber increases the impingement with the wall, resulting in a colder outer wall. Although the use of the tape increases convection, resistance with the wall also increases. Therefore, a perforated tape shape was used with obstacles to intensify rotational velocity. Increasing the height and number of revolutions can enhance velocity by 4.58% and 7.04%, respectively. Meanwhile, as the values of N and Re increase, the temperature decreases by 2.1% and 0.11%, respectively.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":"56 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202200201","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract To intensify the productivity of solar systems, researchers utilized a perforated tape with obstacles in a circular tube filled with nanomaterial. ANSYS FLUENT was used to simulate the results, combining K‐ε approach and a homogeneous approach for the nanomaterial. Grid size was optimized to reduce computation costs, and the accuracy of the simulation was verified using previously published data. The simulations considered the height of the disturber and the revolution as parameters. The insertion of the disturber increases the impingement with the wall, resulting in a colder outer wall. Although the use of the tape increases convection, resistance with the wall also increases. Therefore, a perforated tape shape was used with obstacles to intensify rotational velocity. Increasing the height and number of revolutions can enhance velocity by 4.58% and 7.04%, respectively. Meanwhile, as the values of N and Re increase, the temperature decreases by 2.1% and 0.11%, respectively.
期刊介绍:
ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.