Integrability and BRST invariance from BF topological theory

A Restuccia, A Sotomayor
{"title":"Integrability and BRST invariance from BF topological theory","authors":"A Restuccia, A Sotomayor","doi":"10.1088/1751-8121/acff9b","DOIUrl":null,"url":null,"abstract":"Abstract We consider the Becchi, Rouet, Stora and Tyutin (BRST) invariant effective action of the non-abelian BF topological theory in two dimensions with gauge group <?CDATA $Sl(2,\\mathbb{R})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>S</mml:mi> <mml:mi>l</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> . By considering different gauge fixing conditions, the zero-curvature field equation gives rise to several well known integrable equations. We prove that each integrable equation together with the associated ghost field evolution equation, obtained from the BF theory, is a BRST invariant system with an infinite sequence of BRST invariant conserved quantities. We construct explicitly the systems and the BRST transformation laws for the Korteweg-de Vries (KdV) sequence (including the KdV, mKdV and CKdV equations) and Harry Dym integrable equation.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acff9b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider the Becchi, Rouet, Stora and Tyutin (BRST) invariant effective action of the non-abelian BF topological theory in two dimensions with gauge group S l ( 2 , R ) . By considering different gauge fixing conditions, the zero-curvature field equation gives rise to several well known integrable equations. We prove that each integrable equation together with the associated ghost field evolution equation, obtained from the BF theory, is a BRST invariant system with an infinite sequence of BRST invariant conserved quantities. We construct explicitly the systems and the BRST transformation laws for the Korteweg-de Vries (KdV) sequence (including the KdV, mKdV and CKdV equations) and Harry Dym integrable equation.
基于BF拓扑理论的可积性和BRST不变性
摘要考虑非阿贝尔BF拓扑理论在具有规范群s1 (2, R)的二维空间中的Becchi, Rouet, Stora和Tyutin (BRST)不变有效作用。通过考虑不同的规范固定条件,零曲率场方程得到了几个著名的可积方程。我们证明了由BF理论得到的每一个可积方程及其相关的鬼场演化方程都是一个BRST不变系统,具有BRST不变守恒量的无穷序列。我们明确地构造了Korteweg-de Vries (KdV)序列(包括KdV、mKdV和CKdV方程)和Harry Dym可积方程的系统和BRST变换律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信