Autonomous Thermosiphon System of Passive Residual Heat Removal from the Primary Circuit of the Reactor Plant: Features of Operation, Characteristics and Basic Advantages
{"title":"Autonomous Thermosiphon System of Passive Residual Heat Removal from the Primary Circuit of the Reactor Plant: Features of Operation, Characteristics and Basic Advantages","authors":"I. I Sviridenko, D. V. Shevelyov","doi":"10.21122/1029-7448-2023-66-5-433-450","DOIUrl":null,"url":null,"abstract":"An autonomous system of passive removal of residual heat (PRRHS) of a reactor installation with VVER designed to ensure the safety of nuclear power plants in an accident with complete long-term blackout is considered. The system provides for the removal of heat directly from the first circuit of the reactor plant (PRRHS R). In order to increase the reliability and safety of the emergency heat sink, heat exchange equipment based on closed-type evaporation and condensation devices – two-phase thermosyphons – has been used in the system. The main feature of such heat exchangers is that their thermosiphon assemblies structurally separate the primary circuit and the auxiliary circuit of the PRRHS, which is removed outside the reactor compartment, and provide safe and efficient heat removal, reduce the risk of radioactive contamination spreading beyond safety barriers. Such autonomous passive systems will provide effective heat removal directly from the primary circuit by changing the chain of successive heat transfer sites from nuclear fuel to the final absorber and excluding from it such elements, as for example steam generators, the condition and operability of which in the emergency process of heat removal have a major impact on the safety of the reactor core. The article presents a diagram of an autonomous heat sink system; also, a description of its operation is given. The main characteristics of the course of the emergency process of removal of residual heat by the autonomous thermosiphon PRRHS R obtained by computational modeling have been considered. The advantages of an autonomous thermosiphon passive system in comparison with a passive heat removal system of a reactor installation with VVER through the second circuit are analyzed. The obtained results are proposed to solve the problems of diversification of passive safety systems of evolutionary reactor plants of nuclear power plants with VVER type reactors.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2023-66-5-433-450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
An autonomous system of passive removal of residual heat (PRRHS) of a reactor installation with VVER designed to ensure the safety of nuclear power plants in an accident with complete long-term blackout is considered. The system provides for the removal of heat directly from the first circuit of the reactor plant (PRRHS R). In order to increase the reliability and safety of the emergency heat sink, heat exchange equipment based on closed-type evaporation and condensation devices – two-phase thermosyphons – has been used in the system. The main feature of such heat exchangers is that their thermosiphon assemblies structurally separate the primary circuit and the auxiliary circuit of the PRRHS, which is removed outside the reactor compartment, and provide safe and efficient heat removal, reduce the risk of radioactive contamination spreading beyond safety barriers. Such autonomous passive systems will provide effective heat removal directly from the primary circuit by changing the chain of successive heat transfer sites from nuclear fuel to the final absorber and excluding from it such elements, as for example steam generators, the condition and operability of which in the emergency process of heat removal have a major impact on the safety of the reactor core. The article presents a diagram of an autonomous heat sink system; also, a description of its operation is given. The main characteristics of the course of the emergency process of removal of residual heat by the autonomous thermosiphon PRRHS R obtained by computational modeling have been considered. The advantages of an autonomous thermosiphon passive system in comparison with a passive heat removal system of a reactor installation with VVER through the second circuit are analyzed. The obtained results are proposed to solve the problems of diversification of passive safety systems of evolutionary reactor plants of nuclear power plants with VVER type reactors.
期刊介绍:
The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.