A. R. Balasubramanian, Javier Esparza, Mikhail Raskin
{"title":"Finding Cut-Offs in Leaderless Rendez-Vous Protocols is Easy","authors":"A. R. Balasubramanian, Javier Esparza, Mikhail Raskin","doi":"10.46298/lmcs-19(4:2)2023","DOIUrl":null,"url":null,"abstract":"In rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number $B$ such that all initial configurations of the protocol with at least $B$ agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper (Horn and Sangnier, CONCUR 2020), Horn and Sangnier proved that the cut-off problem is decidable (and at least as hard as the Petri net reachability problem) for protocols with a leader, and in EXPSPACE for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to PSPACE and NP, respectively. The problem of lowering these upper bounds or finding matching lower bounds was left open. We show that the cut-off problem is P-complete for leaderless protocols and in NC for leaderless symmetric protocols. Further, we also consider a variant of the cut-off problem suggested in (Horn and Sangnier, CONCUR 2020), which we call the bounded-loss cut-off problem and prove that this problem is P-complete for leaderless protocols and NL-complete for leaderless symmetric protocols. Finally, by reusing some of the techniques applied for the analysis of leaderless protocols, we show that the cut-off problem for symmetric protocols with a leader is NP-complete, thereby improving upon all the elementary upper bounds of (Horn and Sangnier, CONCUR 2020).","PeriodicalId":49904,"journal":{"name":"Logical Methods in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Methods in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(4:2)2023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number $B$ such that all initial configurations of the protocol with at least $B$ agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper (Horn and Sangnier, CONCUR 2020), Horn and Sangnier proved that the cut-off problem is decidable (and at least as hard as the Petri net reachability problem) for protocols with a leader, and in EXPSPACE for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to PSPACE and NP, respectively. The problem of lowering these upper bounds or finding matching lower bounds was left open. We show that the cut-off problem is P-complete for leaderless protocols and in NC for leaderless symmetric protocols. Further, we also consider a variant of the cut-off problem suggested in (Horn and Sangnier, CONCUR 2020), which we call the bounded-loss cut-off problem and prove that this problem is P-complete for leaderless protocols and NL-complete for leaderless symmetric protocols. Finally, by reusing some of the techniques applied for the analysis of leaderless protocols, we show that the cut-off problem for symmetric protocols with a leader is NP-complete, thereby improving upon all the elementary upper bounds of (Horn and Sangnier, CONCUR 2020).
期刊介绍:
Logical Methods in Computer Science is a fully refereed, open access, free, electronic journal. It welcomes papers on theoretical and practical areas in computer science involving logical methods, taken in a broad sense; some particular areas within its scope are listed below. Papers are refereed in the traditional way, with two or more referees per paper. Copyright is retained by the author.
Topics of Logical Methods in Computer Science:
Algebraic methods
Automata and logic
Automated deduction
Categorical models and logic
Coalgebraic methods
Computability and Logic
Computer-aided verification
Concurrency theory
Constraint programming
Cyber-physical systems
Database theory
Defeasible reasoning
Domain theory
Emerging topics: Computational systems in biology
Emerging topics: Quantum computation and logic
Finite model theory
Formalized mathematics
Functional programming and lambda calculus
Inductive logic and learning
Interactive proof checking
Logic and algorithms
Logic and complexity
Logic and games
Logic and probability
Logic for knowledge representation
Logic programming
Logics of programs
Modal and temporal logics
Program analysis and type checking
Program development and specification
Proof complexity
Real time and hybrid systems
Reasoning about actions and planning
Satisfiability
Security
Semantics of programming languages
Term rewriting and equational logic
Type theory and constructive mathematics.