A higher-order life crafting scale validation using PLS-CCA: the Italian version

Q1 Mathematics
Emanuela Ingusci, Mario Angelelli, Giovanna Alessia Sternativo, Alessia Anna Catalano, Elisa De Carlo, Claudio G. Cortese, Evangelia Demerouti, Enrico Ciavolino
{"title":"A higher-order life crafting scale validation using PLS-CCA: the Italian version","authors":"Emanuela Ingusci, Mario Angelelli, Giovanna Alessia Sternativo, Alessia Anna Catalano, Elisa De Carlo, Claudio G. Cortese, Evangelia Demerouti, Enrico Ciavolino","doi":"10.1007/s41237-023-00209-y","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we highlight Life Crafting Scale (LCS) factor structure and model specifications by using partial least squares structural equations modelling (PLS-SEM) and confirmatory composite analysis (CCA), with a sample of Italian students ( $$n=953$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>953</mml:mn> </mml:mrow> </mml:math> ). From the validation results obtained through PLS-CCA, we identify the emergence of both the reflective nature of the scores of the LCS subscale and an alternative measurement model of the LCS scores as a second-order reflective–reflective model.","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behaviormetrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41237-023-00209-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this study, we highlight Life Crafting Scale (LCS) factor structure and model specifications by using partial least squares structural equations modelling (PLS-SEM) and confirmatory composite analysis (CCA), with a sample of Italian students ( $$n=953$$ n = 953 ). From the validation results obtained through PLS-CCA, we identify the emergence of both the reflective nature of the scores of the LCS subscale and an alternative measurement model of the LCS scores as a second-order reflective–reflective model.
使用PLS-CCA的高阶生命制作规模验证:意大利语版本
摘要本研究采用偏最小二乘结构方程模型(PLS-SEM)和验证性复合分析(CCA),以意大利学生($$n=953$$ n = 953)为样本,重点分析了生命制作量表(LCS)的因子结构和模型规格。从PLS-CCA获得的验证结果中,我们发现了LCS子量表得分的反射性质,以及LCS得分的另一种测量模型,即二阶反射-反射模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Behaviormetrika
Behaviormetrika Mathematics-Analysis
CiteScore
5.10
自引率
0.00%
发文量
33
期刊介绍: Behaviormetrika is issued twice a year to provide an international forum for new theoretical and empirical quantitative approaches in data science. When Behaviormetrika was launched in 1974, the journal advocated data science, as an interdisciplinary field that included the use of statistical methods to extract meaningful knowledge from data in its various forms: structured or unstructured. Behaviormetrika is the oldest journal addressing the topic of data science. The first editor-in-chief of Behaviormetrika, Dr. Chikio Hayashi, described data science in this way:“Data science is not only a synthetic concept to unify statistics, data analysis, and their related methods; it also comprises its results. Data science is intended to analyze and understand actual phenomena with ‘data.’ In other words, the aim of data science is to reveal the features or the hidden structure of complicated natural, human, and social phenomena using data from a different perspective from the established or traditional theory and method.”  Behaviormetrika is a fully refereed international journal, which publishes original research papers, notes, and review articles. Subject areas suitable for publication include but are not limited to the following methodologies and fields. Methodologies Data scienceMathematical statisticsSurvey methodologiesArtificial intelligence Information theoryMachine learning Knowledge discovery in databases (KDD)Graphical modelsComputer scienceAlgorithms FieldsMedicinePsychologyEducationEconomicsMarketingSocial scienceSociologyPolitical sciencePolicy scienceCognitive scienceBrain science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信