Jorge Sanchez-Medina, Dieter De Baere, Charles Snyers, Zoé Jardon, Michaël Hinderdael, Julien Ertveldt, Patrick Guillaume
{"title":"Comparison and analysis of hyperspectral temperature data in directed energy deposition","authors":"Jorge Sanchez-Medina, Dieter De Baere, Charles Snyers, Zoé Jardon, Michaël Hinderdael, Julien Ertveldt, Patrick Guillaume","doi":"10.2351/7.0001074","DOIUrl":null,"url":null,"abstract":"Directed energy deposition is an additive manufacturing process that allows the production of near net shape structures. Moreover, the process can also be applied for the repair of high value components. To obtain structures with consistent good characteristics, the directed energy deposition process requires the implementation of a control system. The currently applied approaches for control that are discussed in the literature have specifically focused on melt-pool temperature control. Pyrometers have been used for such purposes; however, they provide only a single scalar value without any spatial information. In this paper, the implementation of a high-speed hyperspectral camera-based system is discussed with a high spatial resolution unlike the pyrometers. Different calibration and temperature estimation procedures for this camera-based system are evaluated and analyzed. The number of effective wavelengths needed for temperature estimation will be discussed in detail and provide an outlook on the potential of this hyperspectral camera-based system. In addition to the number of wavelengths, another important aspect of the temperature estimation methods is the stability with respect to disturbances. Within this paper, the impact of the nominal laser power will be evaluated on the stability of the temperature signals for a control system.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Directed energy deposition is an additive manufacturing process that allows the production of near net shape structures. Moreover, the process can also be applied for the repair of high value components. To obtain structures with consistent good characteristics, the directed energy deposition process requires the implementation of a control system. The currently applied approaches for control that are discussed in the literature have specifically focused on melt-pool temperature control. Pyrometers have been used for such purposes; however, they provide only a single scalar value without any spatial information. In this paper, the implementation of a high-speed hyperspectral camera-based system is discussed with a high spatial resolution unlike the pyrometers. Different calibration and temperature estimation procedures for this camera-based system are evaluated and analyzed. The number of effective wavelengths needed for temperature estimation will be discussed in detail and provide an outlook on the potential of this hyperspectral camera-based system. In addition to the number of wavelengths, another important aspect of the temperature estimation methods is the stability with respect to disturbances. Within this paper, the impact of the nominal laser power will be evaluated on the stability of the temperature signals for a control system.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.