Comparison and analysis of hyperspectral temperature data in directed energy deposition

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jorge Sanchez-Medina, Dieter De Baere, Charles Snyers, Zoé Jardon, Michaël Hinderdael, Julien Ertveldt, Patrick Guillaume
{"title":"Comparison and analysis of hyperspectral temperature data in directed energy deposition","authors":"Jorge Sanchez-Medina, Dieter De Baere, Charles Snyers, Zoé Jardon, Michaël Hinderdael, Julien Ertveldt, Patrick Guillaume","doi":"10.2351/7.0001074","DOIUrl":null,"url":null,"abstract":"Directed energy deposition is an additive manufacturing process that allows the production of near net shape structures. Moreover, the process can also be applied for the repair of high value components. To obtain structures with consistent good characteristics, the directed energy deposition process requires the implementation of a control system. The currently applied approaches for control that are discussed in the literature have specifically focused on melt-pool temperature control. Pyrometers have been used for such purposes; however, they provide only a single scalar value without any spatial information. In this paper, the implementation of a high-speed hyperspectral camera-based system is discussed with a high spatial resolution unlike the pyrometers. Different calibration and temperature estimation procedures for this camera-based system are evaluated and analyzed. The number of effective wavelengths needed for temperature estimation will be discussed in detail and provide an outlook on the potential of this hyperspectral camera-based system. In addition to the number of wavelengths, another important aspect of the temperature estimation methods is the stability with respect to disturbances. Within this paper, the impact of the nominal laser power will be evaluated on the stability of the temperature signals for a control system.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Directed energy deposition is an additive manufacturing process that allows the production of near net shape structures. Moreover, the process can also be applied for the repair of high value components. To obtain structures with consistent good characteristics, the directed energy deposition process requires the implementation of a control system. The currently applied approaches for control that are discussed in the literature have specifically focused on melt-pool temperature control. Pyrometers have been used for such purposes; however, they provide only a single scalar value without any spatial information. In this paper, the implementation of a high-speed hyperspectral camera-based system is discussed with a high spatial resolution unlike the pyrometers. Different calibration and temperature estimation procedures for this camera-based system are evaluated and analyzed. The number of effective wavelengths needed for temperature estimation will be discussed in detail and provide an outlook on the potential of this hyperspectral camera-based system. In addition to the number of wavelengths, another important aspect of the temperature estimation methods is the stability with respect to disturbances. Within this paper, the impact of the nominal laser power will be evaluated on the stability of the temperature signals for a control system.
定向能沉积中高光谱温度数据的比较与分析
定向能沉积是一种增材制造工艺,允许生产近净形状结构。此外,该工艺还可用于高价值部件的修复。为了获得具有一致良好特性的结构,定向能沉积过程需要实现控制系统。目前在文献中讨论的控制方法主要集中在熔池温度控制上。高温计已用于此类目的;但是,它们只提供单个标量值,没有任何空间信息。本文讨论了一种不同于高温计的高空间分辨率高速高光谱相机系统的实现。对基于摄像机的系统的不同标定和温度估计方法进行了评估和分析。本文将详细讨论温度估计所需的有效波长的数量,并对这种基于高光谱相机的系统的潜力进行展望。除了波长数之外,温度估计方法的另一个重要方面是相对于干扰的稳定性。在本文中,将评估标称激光功率对控制系统温度信号稳定性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信