{"title":"Leveraging Transfer Learning in LSTM Neural Networks for Data-Efficient Burst Detection in Water Distribution Systems","authors":"Konstantinos Glynis, Zoran Kapelan, Martijn Bakker, Riccardo Taormina","doi":"10.1007/s11269-023-03637-3","DOIUrl":null,"url":null,"abstract":"Abstract Researchers and engineers employ machine learning (ML) tools to detect pipe bursts and prevent significant non-revenue water losses in water distribution systems (WDS). Nonetheless, many approaches developed so far consider a fixed number of sensors, which requires the ML model redevelopment and collection of sufficient data with the new sensor configuration for training. To overcome these issues, this study presents a novel approach based on Long Short-Term Memory neural networks (NNs) that leverages transfer learning to manage a varying number of sensors and retain good detection performance with limited training data. The proposed detection model first learns to reproduce the normal behavior of the system on a dataset obtained in burst-free conditions. The training process involves predicting flow and pressure one-time step ahead using historical data and time-related features as inputs. During testing, a post-prediction step flags potential bursts based on the comparison between the observations and model predictions using a time-varied error threshold. When adding new sensors, we implement transfer learning by replicating the weights of existing channels and then fine-tune the augmented NN. We evaluate the robustness of the methodology on simulated fire hydrant bursts and real-bursts in 10 district metered areas (DMAs) of the UK. For real bursts, we perform a sensitivity analysis to understand the impact of data resolution and error threshold on burst detection performance. The results obtained demonstrate that this ML-based methodology can achieve Precision of up to 98.1% in real-life settings and can identify bursts, even in data scarce conditions.","PeriodicalId":23611,"journal":{"name":"Water Resources Management","volume":"34 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11269-023-03637-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Researchers and engineers employ machine learning (ML) tools to detect pipe bursts and prevent significant non-revenue water losses in water distribution systems (WDS). Nonetheless, many approaches developed so far consider a fixed number of sensors, which requires the ML model redevelopment and collection of sufficient data with the new sensor configuration for training. To overcome these issues, this study presents a novel approach based on Long Short-Term Memory neural networks (NNs) that leverages transfer learning to manage a varying number of sensors and retain good detection performance with limited training data. The proposed detection model first learns to reproduce the normal behavior of the system on a dataset obtained in burst-free conditions. The training process involves predicting flow and pressure one-time step ahead using historical data and time-related features as inputs. During testing, a post-prediction step flags potential bursts based on the comparison between the observations and model predictions using a time-varied error threshold. When adding new sensors, we implement transfer learning by replicating the weights of existing channels and then fine-tune the augmented NN. We evaluate the robustness of the methodology on simulated fire hydrant bursts and real-bursts in 10 district metered areas (DMAs) of the UK. For real bursts, we perform a sensitivity analysis to understand the impact of data resolution and error threshold on burst detection performance. The results obtained demonstrate that this ML-based methodology can achieve Precision of up to 98.1% in real-life settings and can identify bursts, even in data scarce conditions.
期刊介绍:
Water Resources Management is an international, multidisciplinary forum for the publication of original contributions and the exchange of knowledge and experience on the management of water resources. In particular, the journal publishes contributions on water resources assessment, development, conservation and control, emphasizing policies and strategies. Contributions examine planning and design of water resource systems, and
operation, maintenance and administration of water resource systems.
Coverage extends to these closely related topics: water demand and consumption; applied surface and groundwater hydrology; water management techniques; simulation and modelling of water resource systems; forecasting and control of quantity and quality of water; economic and social aspects of water use; legislation and water resources protection.
Water Resources Management is supported scientifically by the European Water Resources Association, a scientific and technical nonprofit-making European association.