{"title":"A model for seagrass species competition: dynamics of the symmetric case.","authors":"Pablo Moreno-Spiegelberg, Damià Gomila","doi":"10.1051/mmnp/2023033","DOIUrl":null,"url":null,"abstract":"We propose a general population dynamics model for two seagrass species growing and interacting in two spatial dimensions. The model includes spatial terms accounting for the clonal growth characteristics of seagrasses, and coupling between species through the net mortality rate. We consider both intraspecies and interspecies facilitative and competitive interactions, allowing density-dependent interaction mechanisms. Here we study the case of very similar species with reciprocal interactions, which allows reducing the number of the model parameters to just four, and whose bifurcation structure can be considered the backbone of the complete system. We find that the parameter space can be divided into ten regions with qualitatively different bifurcation diagrams. These regimes can be further grouped into just five regimes with different ecological interpretations. Our analysis allows the classification of all possible density distributions and dynamical behaviors of meadows with two coexisting species.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mmnp/2023033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a general population dynamics model for two seagrass species growing and interacting in two spatial dimensions. The model includes spatial terms accounting for the clonal growth characteristics of seagrasses, and coupling between species through the net mortality rate. We consider both intraspecies and interspecies facilitative and competitive interactions, allowing density-dependent interaction mechanisms. Here we study the case of very similar species with reciprocal interactions, which allows reducing the number of the model parameters to just four, and whose bifurcation structure can be considered the backbone of the complete system. We find that the parameter space can be divided into ten regions with qualitatively different bifurcation diagrams. These regimes can be further grouped into just five regimes with different ecological interpretations. Our analysis allows the classification of all possible density distributions and dynamical behaviors of meadows with two coexisting species.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.