Simple purely infinite $C^*$-algebras associated with normal subshifts

IF 0.9 3区 数学 Q2 MATHEMATICS
Kengo Matsumoto
{"title":"Simple purely infinite $C^*$-algebras associated with normal subshifts","authors":"Kengo Matsumoto","doi":"10.4171/dm/915","DOIUrl":null,"url":null,"abstract":"We will introduce a notion of normal subshifts. A subshift $(\\Lambda,\\sigma)$ is said to be normal if it satisfies a certain synchronizing property called $\\lambda$-synchronizing and is infinite as a set. We have lots of purely infinite simple $C^*$-algebras from normal subshifts including irreducible infinite sofic shifts, Dyck shifts, $\\beta$-shifts, and so on. Eventual conjugacy of one-sided normal subshifts and topological conjugacy of two-sided normal subshifts are characterized in terms of the associated $C^*$-algebras and the associated stabilized $C^*$-algebras with its diagonals and gauge actions, respectively.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"43 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/dm/915","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We will introduce a notion of normal subshifts. A subshift $(\Lambda,\sigma)$ is said to be normal if it satisfies a certain synchronizing property called $\lambda$-synchronizing and is infinite as a set. We have lots of purely infinite simple $C^*$-algebras from normal subshifts including irreducible infinite sofic shifts, Dyck shifts, $\beta$-shifts, and so on. Eventual conjugacy of one-sided normal subshifts and topological conjugacy of two-sided normal subshifts are characterized in terms of the associated $C^*$-algebras and the associated stabilized $C^*$-algebras with its diagonals and gauge actions, respectively.
与正规子移相关的简单纯无穷代数
我们将引入正规子位移的概念。如果子移位$(\Lambda,\sigma)$满足某个称为$\lambda$ - synchronization的同步属性,并且作为一个集合是无限的,则它被称为正常移位。我们有许多纯粹无限的简单$C^*$ -代数,包括不可约无限的sofic移位,Dyck移位,$\beta$ -移位,等等。用相关的$C^*$ -代数和相关的稳定的$C^*$ -代数及其对角线和规范作用分别表征了单侧正规子移的最终共轭性和双面正规子移的拓扑共轭性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信