残留オーステナイトを含有する中Mn複合組織鋼の高速変形特性

IF 0.3 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Yoshitaka Okitsu, Tomohiko Hojo, Satoshi Morooka, Goro Miyamoto
{"title":"残留オーステナイトを含有する中Mn複合組織鋼の高速変形特性","authors":"Yoshitaka Okitsu, Tomohiko Hojo, Satoshi Morooka, Goro Miyamoto","doi":"10.2355/tetsutohagane.tetsu-2023-065","DOIUrl":null,"url":null,"abstract":"We investigated the dynamic tensile properties of 4, 5, 6-mass%-Mn-containing low carbon steels with multi-phase microstructures containing retained austenite. The five materials used were classified into two groups. The first group of materials, with around 10% of retained austenite, showed normal strain rete dependence of yield strength (YS) and tensile strength (TS) as in conventional high strength steels. The second group of materials, containing 25-36 % of retained austenite and exhibiting Lüders elongation, showed also normal strain rate dependence of YS and flow stress at Lüders deformation, but TS varied in a complex manner. Among the second group, in the 4 Mn steel, TS was nearly constant at strain rates below 1 s-1 and increased slightly at higher strain rates. In the 5 and 6 Mn steels, TS once decreased up to the strain rate of 1 or 10 s-1, and then began to increase at higher strain rates. These behaviors were discussed in terms of temperature rise during plastic deformation and thermal stability of retained austenite. In the 4 Mn steel with relatively unstable retained austenite, almost all the austenite transforms regardless of strain rate. In the 5 and 6 Mn steels, where the retained austenite is moderately stable, its martensitic transformation is suppressed due to temperature rise, resulting in the decrease in TS at relatively low strain rates. At higher strain rates, the increase in flow stress prevails and TS begins to increase.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"26 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-065","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the dynamic tensile properties of 4, 5, 6-mass%-Mn-containing low carbon steels with multi-phase microstructures containing retained austenite. The five materials used were classified into two groups. The first group of materials, with around 10% of retained austenite, showed normal strain rete dependence of yield strength (YS) and tensile strength (TS) as in conventional high strength steels. The second group of materials, containing 25-36 % of retained austenite and exhibiting Lüders elongation, showed also normal strain rate dependence of YS and flow stress at Lüders deformation, but TS varied in a complex manner. Among the second group, in the 4 Mn steel, TS was nearly constant at strain rates below 1 s-1 and increased slightly at higher strain rates. In the 5 and 6 Mn steels, TS once decreased up to the strain rate of 1 or 10 s-1, and then began to increase at higher strain rates. These behaviors were discussed in terms of temperature rise during plastic deformation and thermal stability of retained austenite. In the 4 Mn steel with relatively unstable retained austenite, almost all the austenite transforms regardless of strain rate. In the 5 and 6 Mn steels, where the retained austenite is moderately stable, its martensitic transformation is suppressed due to temperature rise, resulting in the decrease in TS at relatively low strain rates. At higher strain rates, the increase in flow stress prevails and TS begins to increase.
含有残留奥氏体的中Mn复合组织钢的高速变形特性
研究了含有残余奥氏体的多相组织含4,5,6质量%- mn低碳钢的动态拉伸性能。所使用的五种材料被分为两组。第一组材料约有10%的残余奥氏体,其屈服强度(YS)和抗拉强度(TS)表现出与传统高强度钢的正常应变相关性。第二组材料的残余奥氏体含量为25- 36%,延伸率为l ders变形,在l ders变形时,YS和流动应力也表现出正常的应变速率依赖关系,但TS的变化方式很复杂。第二组中,在4mn钢中,TS在低于1 s-1的应变速率下几乎不变,在更高的应变速率下略有增加。在5 Mn和6 Mn钢中,TS在应变速率为1或10 s-1时一度下降,然后在更高应变速率下开始上升。从塑性变形时的温升和残余奥氏体的热稳定性两个方面讨论了这些行为。在残余奥氏体相对不稳定的4mn钢中,无论应变速率如何,奥氏体几乎全部转变。在5mn和6mn钢中,残余奥氏体相对稳定,由于温度升高,其马氏体转变受到抑制,导致相对低应变速率下TS降低。在较高的应变速率下,流动应力的增加占上风,TS开始增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: The journal ISIJ International first appeared in 1961 under the title Tetsu-to-Hagané Overseas. The title was changed in 1966 to Transactions of The Iron and Steel Institute of Japan and again in 1989 to the current ISIJ International. The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials. Classification I Fundamentals of High Temperature Processes II Ironmaking III Steelmaking IV Casting and Solidification V Instrumentation, Control, and System Engineering VI Chemical and Physical Analysis VII Forming Processing and Thermomechanical Treatment VIII Welding and Joining IX Surface Treatment and Corrosion X Transformations and Microstructures XI Mechanical Properties XII Physical Properties XIII New Materials and Processes XIV Social and Environmental Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信