{"title":"Multi-Epoch Kriging-Based 3D Mapping-Aided GNSS and Doppler Measurement Fusion using Factor Graph Optimization","authors":"Hoi-Fung Ng, Li-Ta Hsu,, Guohao Zhang","doi":"10.33012/navi.617","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> Global navigation satellite system (GNSS) signal reflection over buildings degrades positioning performance in urban canyons. Different three-dimensional (3D) mapping-aided (3DMA) GNSS algorithms have been proposed, which utilize 3D building models to aid in positioning. Recently, the candidate-based 3DMA GNSS framework has been applied to examine evenly spaced distributed particles. The particles that best match the observed measurements, that is, with the minimum cost, are identified as the receiver location. However, such particle sampling approaches incur a high computational load and are not robust. In this study, a Kriging-based interpolation method is applied to model the cost function of a 3DMA GNSS based on sampled particles, and the modeled cost function is then integrated with Doppler measurements through factor graph optimization. The regressed model can reduce the computational load by sparsely distributing the particles. Designed experiments with smartphone and commercial-level GNSS receivers demonstrate that the positioning performance can achieve a root mean square error of less than 10 m in Hong Kong and New York City urban canyons.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/navi.617","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Global navigation satellite system (GNSS) signal reflection over buildings degrades positioning performance in urban canyons. Different three-dimensional (3D) mapping-aided (3DMA) GNSS algorithms have been proposed, which utilize 3D building models to aid in positioning. Recently, the candidate-based 3DMA GNSS framework has been applied to examine evenly spaced distributed particles. The particles that best match the observed measurements, that is, with the minimum cost, are identified as the receiver location. However, such particle sampling approaches incur a high computational load and are not robust. In this study, a Kriging-based interpolation method is applied to model the cost function of a 3DMA GNSS based on sampled particles, and the modeled cost function is then integrated with Doppler measurements through factor graph optimization. The regressed model can reduce the computational load by sparsely distributing the particles. Designed experiments with smartphone and commercial-level GNSS receivers demonstrate that the positioning performance can achieve a root mean square error of less than 10 m in Hong Kong and New York City urban canyons.
期刊介绍:
NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.