Charline Herrscher, Maroua Ben Haddada, Jessica Andries, Wildriss Viranaicken, Colette Cordonin, Gilles Gadea, Patrick Mavingui, Chaker El-Kalamouni, Anne-Laure Morel, Philippe Desprès
{"title":"The Gold Nanoparticles-Functionalized with the Synthetic PADRE^S2P6 Peptide Can Be Useful for SARS-CoV-2 Detection","authors":"Charline Herrscher, Maroua Ben Haddada, Jessica Andries, Wildriss Viranaicken, Colette Cordonin, Gilles Gadea, Patrick Mavingui, Chaker El-Kalamouni, Anne-Laure Morel, Philippe Desprès","doi":"10.37256/nat.4220233692","DOIUrl":null,"url":null,"abstract":"Conjugation of bioactive peptides to nanomaterials is a promising approach for a variety of biomedical uses. Indeed, we assumed that gold nanoparticles (AuNPs) functionalized with synthetic viral peptides represent a promising strategy to elicit antibody response against zoonotic coronavirus SARS-CoV-2 responsible for pandemic COVID-19 disease. Two specific linear B-cell epitopes namely S1P4 and S2P6 have been recently identified in the SARS-CoV-2 spike protein expressed by the COVID-19 mRNA BNT162 vaccine of Pfizer-BioNTech and marketed under the brand name Comirnaty. The present study aimed at investigating the immunogenic potential of AuNPs functionalized with synthetic PADRE^S1P4 and PADRE^S2P6 peptides in a mouse model. The AuNPs were synthesized using an environmentally friendly process. In both synthetic PADRE^S1P4 and PADRE^S2P6 peptides, the SARS-CoV-2 spike antibody epitope is preceded by a polybasic sequence and the T-helper cell response activator PADRE. A thiol-terminated polyethylene glycol was used to decorate AuNP surface with the synthetic peptides. The AuNPs-peptide conjugates were inoculated without any adjuvant to adult BALB/c mice by intramuscular route in a prime-boost schedule. The AuNPs functionalized with the PADRE^S2P6 peptide but not the PADRE^S1P4 peptide were efficient to elicit antibody production of relevant specificity against the SARS-CoV-2 spike protein. The ability of PADRE^S2P6 peptide-reactive antibodies to recognize SARS-CoV-2 variants opens important perspectives for AuNP-peptide conjugates as potential serological tools to support the surveillance of wildlife-origin coronaviruses.","PeriodicalId":18798,"journal":{"name":"Nanoarchitectonics","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoarchitectonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/nat.4220233692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conjugation of bioactive peptides to nanomaterials is a promising approach for a variety of biomedical uses. Indeed, we assumed that gold nanoparticles (AuNPs) functionalized with synthetic viral peptides represent a promising strategy to elicit antibody response against zoonotic coronavirus SARS-CoV-2 responsible for pandemic COVID-19 disease. Two specific linear B-cell epitopes namely S1P4 and S2P6 have been recently identified in the SARS-CoV-2 spike protein expressed by the COVID-19 mRNA BNT162 vaccine of Pfizer-BioNTech and marketed under the brand name Comirnaty. The present study aimed at investigating the immunogenic potential of AuNPs functionalized with synthetic PADRE^S1P4 and PADRE^S2P6 peptides in a mouse model. The AuNPs were synthesized using an environmentally friendly process. In both synthetic PADRE^S1P4 and PADRE^S2P6 peptides, the SARS-CoV-2 spike antibody epitope is preceded by a polybasic sequence and the T-helper cell response activator PADRE. A thiol-terminated polyethylene glycol was used to decorate AuNP surface with the synthetic peptides. The AuNPs-peptide conjugates were inoculated without any adjuvant to adult BALB/c mice by intramuscular route in a prime-boost schedule. The AuNPs functionalized with the PADRE^S2P6 peptide but not the PADRE^S1P4 peptide were efficient to elicit antibody production of relevant specificity against the SARS-CoV-2 spike protein. The ability of PADRE^S2P6 peptide-reactive antibodies to recognize SARS-CoV-2 variants opens important perspectives for AuNP-peptide conjugates as potential serological tools to support the surveillance of wildlife-origin coronaviruses.