Asymptotic behavior of solutions of a second-order nonlinear discrete equation of Emden-Fowler type

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Josef Diblík, Evgeniya Korobko
{"title":"Asymptotic behavior of solutions of a second-order nonlinear discrete equation of Emden-Fowler type","authors":"Josef Diblík, Evgeniya Korobko","doi":"10.1515/anona-2023-0105","DOIUrl":null,"url":null,"abstract":"Abstract The article investigates a second-order nonlinear difference equation of Emden-Fowler type <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>±</m:mo> <m:msup> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> {\\Delta }^{2}u\\left(k)\\pm {k}^{\\alpha }{u}^{m}\\left(k)=0, where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k is the independent variable with values <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>1</m:mn> <m:mo form=\"prefix\">,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> </m:math> k={k}_{0},{k}_{0}+1,\\ldots \\hspace{0.33em} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>u</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> u:\\left\\{{k}_{0},{k}_{0}+1,\\ldots \\hspace{0.33em}\\right\\}\\to {\\mathbb{R}} is the dependent variable, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:math> {k}_{0} is a fixed integer, and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {\\Delta }^{2}u\\left(k) is its second-order forward difference. New conditions with respect to parameters <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> \\alpha \\in {\\mathbb{R}} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> m\\in {\\mathbb{R}} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>≠</m:mo> <m:mn>1</m:mn> </m:math> m\\ne 1 , are found such that the equation admits a solution asymptotically represented by a power function that is asymptotically equivalent to the exact solution of the nonlinear second-order differential Emden-Fowler equation <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msup> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>±</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>.</m:mo> </m:math> {y}^{^{\\prime\\prime} }\\left(x)\\pm {x}^{\\alpha }{y}^{m}\\left(x)=0. Two-term asymptotic representations are given not only for the solution itself but also for its first- and second-order forward differences as well. Previously known results are discussed, and illustrative examples are considered.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0105","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The article investigates a second-order nonlinear difference equation of Emden-Fowler type Δ 2 u ( k ) ± k α u m ( k ) = 0 , {\Delta }^{2}u\left(k)\pm {k}^{\alpha }{u}^{m}\left(k)=0, where k k is the independent variable with values k = k 0 , k 0 + 1 , k={k}_{0},{k}_{0}+1,\ldots \hspace{0.33em} , u : { k 0 , k 0 + 1 , } R u:\left\{{k}_{0},{k}_{0}+1,\ldots \hspace{0.33em}\right\}\to {\mathbb{R}} is the dependent variable, k 0 {k}_{0} is a fixed integer, and Δ 2 u ( k ) {\Delta }^{2}u\left(k) is its second-order forward difference. New conditions with respect to parameters α R \alpha \in {\mathbb{R}} and m R m\in {\mathbb{R}} , m 1 m\ne 1 , are found such that the equation admits a solution asymptotically represented by a power function that is asymptotically equivalent to the exact solution of the nonlinear second-order differential Emden-Fowler equation y ( x ) ± x α y m ( x ) = 0 . {y}^{^{\prime\prime} }\left(x)\pm {x}^{\alpha }{y}^{m}\left(x)=0. Two-term asymptotic representations are given not only for the solution itself but also for its first- and second-order forward differences as well. Previously known results are discussed, and illustrative examples are considered.
一类二阶Emden-Fowler型非线性离散方程解的渐近性质
摘要研究了Emden-Fowler型二阶非线性差分方程Δ 2u (k)±k α u m (k)=0, {\Delta ^}2u{}\left (k) \pm k{^ }{\alpha u}{^}m{}\left (k)=0,其中k k为自变量,其值为k=k 0,k 0+1,…k={k_0},{k_0}+1, {}{}\ldots, \hspace{0.33em}u:{ k 0,k 0+1,…}→R u。\left {{k_0},{k_0}+1, {}{}\ldots\hspace{0.33em}\right} \to{\mathbb{R}}为因变量,k 0 {k_0}为固定整数,Δ 2u (k) {}{\Delta ^}2u{}\left (k)为其二阶正方差。关于参数α∈R \alpha\in{\mathbb{R}}和m∈R m \in{\mathbb{R}}, m≠1 m \ne 1的新条件,使得方程的解渐近地表示为一个幂函数,该幂函数渐近地等价于非线性二阶微分Emden-Fowler方程y″(x)±x α ym (x) = 0的精确解。{Y} ^{^{\prime\prime}}\left (x) \pm x{^ }{\alpha Y}{ ^}m{}\left (x)=0。不仅给出了解本身的两项渐近表示,而且给出了解的一阶和二阶正差的两项渐近表示。讨论了以前已知的结果,并考虑了说明性的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信