{"title":"Asymptotic behavior of solutions of a second-order nonlinear discrete equation of Emden-Fowler type","authors":"Josef Diblík, Evgeniya Korobko","doi":"10.1515/anona-2023-0105","DOIUrl":null,"url":null,"abstract":"Abstract The article investigates a second-order nonlinear difference equation of Emden-Fowler type <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>±</m:mo> <m:msup> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> {\\Delta }^{2}u\\left(k)\\pm {k}^{\\alpha }{u}^{m}\\left(k)=0, where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k is the independent variable with values <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>1</m:mn> <m:mo form=\"prefix\">,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> </m:math> k={k}_{0},{k}_{0}+1,\\ldots \\hspace{0.33em} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>u</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> u:\\left\\{{k}_{0},{k}_{0}+1,\\ldots \\hspace{0.33em}\\right\\}\\to {\\mathbb{R}} is the dependent variable, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:math> {k}_{0} is a fixed integer, and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {\\Delta }^{2}u\\left(k) is its second-order forward difference. New conditions with respect to parameters <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> \\alpha \\in {\\mathbb{R}} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> m\\in {\\mathbb{R}} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> <m:mo>≠</m:mo> <m:mn>1</m:mn> </m:math> m\\ne 1 , are found such that the equation admits a solution asymptotically represented by a power function that is asymptotically equivalent to the exact solution of the nonlinear second-order differential Emden-Fowler equation <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:msup> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>±</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>.</m:mo> </m:math> {y}^{^{\\prime\\prime} }\\left(x)\\pm {x}^{\\alpha }{y}^{m}\\left(x)=0. Two-term asymptotic representations are given not only for the solution itself but also for its first- and second-order forward differences as well. Previously known results are discussed, and illustrative examples are considered.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0105","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The article investigates a second-order nonlinear difference equation of Emden-Fowler type Δ2u(k)±kαum(k)=0, {\Delta }^{2}u\left(k)\pm {k}^{\alpha }{u}^{m}\left(k)=0, where k k is the independent variable with values k=k0,k0+1,… k={k}_{0},{k}_{0}+1,\ldots \hspace{0.33em} , u:{k0,k0+1,…}→R u:\left\{{k}_{0},{k}_{0}+1,\ldots \hspace{0.33em}\right\}\to {\mathbb{R}} is the dependent variable, k0 {k}_{0} is a fixed integer, and Δ2u(k) {\Delta }^{2}u\left(k) is its second-order forward difference. New conditions with respect to parameters α∈R \alpha \in {\mathbb{R}} and m∈R m\in {\mathbb{R}} , m≠1 m\ne 1 , are found such that the equation admits a solution asymptotically represented by a power function that is asymptotically equivalent to the exact solution of the nonlinear second-order differential Emden-Fowler equation y″(x)±xαym(x)=0. {y}^{^{\prime\prime} }\left(x)\pm {x}^{\alpha }{y}^{m}\left(x)=0. Two-term asymptotic representations are given not only for the solution itself but also for its first- and second-order forward differences as well. Previously known results are discussed, and illustrative examples are considered.