The homotopy-invariance of constructible sheaves

Pub Date : 2023-01-01 DOI:10.4310/hha.2023.v25.n2.a6
Peter J. Haine, Mauro Porta, Jean-Baptiste Teyssier
{"title":"The homotopy-invariance of constructible sheaves","authors":"Peter J. Haine, Mauro Porta, Jean-Baptiste Teyssier","doi":"10.4310/hha.2023.v25.n2.a6","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to explain why the functor that sends a stratified topological space $S$ to the $\\infty$-category of constructible (hyper)sheaves on $S$ with coefficients in a large class of presentable $\\infty$categories is homotopy-invariant. To do this, we first establish a number of results in the unstratified setting, i.e., the setting of locally constant (hyper)sheaves. For example, if $X$ is a locally weakly contractible topological space and $\\mathcal{E}$ is a presentable $\\infty$-category, then we give a concrete formula for the constant hypersheaf functor $\\mathcal{E}\\to \\mathrm{Sh}^{\\mathrm{hyp}}(X;\\mathcal{E})$. This formula lets us show that the constant hypersheaf functor is a right adjoint, and is fully faithful if $X$ is also weakly contractible. It also lets us prove a general monodromy equivalence and categorical K\\\"unneth formula for locally constant hypersheaves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The purpose of this paper is to explain why the functor that sends a stratified topological space $S$ to the $\infty$-category of constructible (hyper)sheaves on $S$ with coefficients in a large class of presentable $\infty$categories is homotopy-invariant. To do this, we first establish a number of results in the unstratified setting, i.e., the setting of locally constant (hyper)sheaves. For example, if $X$ is a locally weakly contractible topological space and $\mathcal{E}$ is a presentable $\infty$-category, then we give a concrete formula for the constant hypersheaf functor $\mathcal{E}\to \mathrm{Sh}^{\mathrm{hyp}}(X;\mathcal{E})$. This formula lets us show that the constant hypersheaf functor is a right adjoint, and is fully faithful if $X$ is also weakly contractible. It also lets us prove a general monodromy equivalence and categorical K\"unneth formula for locally constant hypersheaves.
分享
查看原文
可构轴的同伦不变性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信