The lattice of all 4-valued implicative expansions of Belnap–Dunn logic containing Routley and Meyer’s basic logic Bd

Pub Date : 2023-03-25 DOI:10.1093/jigpal/jzad005
Gemma Robles, José M Méndez
{"title":"The lattice of all 4-valued implicative expansions of Belnap–Dunn logic containing Routley and Meyer’s basic logic B<i>d</i>","authors":"Gemma Robles, José M Méndez","doi":"10.1093/jigpal/jzad005","DOIUrl":null,"url":null,"abstract":"Abstract The well-known logic first degree entailment logic (FDE), introduced by Belnap and Dunn, is defined with $\\wedge $, $\\vee $ and $\\sim $ as the sole primitive connectives. The aim of this paper is to establish the lattice formed by the class of all 4-valued C-extending implicative expansions of FDE verifying the axioms and rules of Routley and Meyer’s basic logic B and its useful disjunctive extension B$^{\\textrm {d}}$. It is to be noted that Boolean negation (so, classical propositional logic) is definable in the strongest element in the said class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The well-known logic first degree entailment logic (FDE), introduced by Belnap and Dunn, is defined with $\wedge $, $\vee $ and $\sim $ as the sole primitive connectives. The aim of this paper is to establish the lattice formed by the class of all 4-valued C-extending implicative expansions of FDE verifying the axioms and rules of Routley and Meyer’s basic logic B and its useful disjunctive extension B$^{\textrm {d}}$. It is to be noted that Boolean negation (so, classical propositional logic) is definable in the strongest element in the said class.
分享
查看原文
包含Routley和Meyer基本逻辑Bd的Belnap-Dunn逻辑的所有4值隐含展开的格
由Belnap和Dunn提出的著名的逻辑一级蕴涵逻辑(FDE)是用$\wedge $、$\vee $和$\sim $作为唯一的原语连接词来定义的。本文的目的是建立由FDE的所有4值c扩展隐含展开类构成的格,以验证Routley和Meyer的基本逻辑B及其有用的析取扩展B$^{\textrm {d}}$的公理和规则。值得注意的是,布尔否定(也就是经典命题逻辑)在上述类的最强元素中是可定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信