The lattice of all 4-valued implicative expansions of Belnap–Dunn logic containing Routley and Meyer’s basic logic Bd

IF 0.6 4区 数学 Q2 LOGIC
Gemma Robles, José M Méndez
{"title":"The lattice of all 4-valued implicative expansions of Belnap–Dunn logic containing Routley and Meyer’s basic logic B<i>d</i>","authors":"Gemma Robles, José M Méndez","doi":"10.1093/jigpal/jzad005","DOIUrl":null,"url":null,"abstract":"Abstract The well-known logic first degree entailment logic (FDE), introduced by Belnap and Dunn, is defined with $\\wedge $, $\\vee $ and $\\sim $ as the sole primitive connectives. The aim of this paper is to establish the lattice formed by the class of all 4-valued C-extending implicative expansions of FDE verifying the axioms and rules of Routley and Meyer’s basic logic B and its useful disjunctive extension B$^{\\textrm {d}}$. It is to be noted that Boolean negation (so, classical propositional logic) is definable in the strongest element in the said class.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"231 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The well-known logic first degree entailment logic (FDE), introduced by Belnap and Dunn, is defined with $\wedge $, $\vee $ and $\sim $ as the sole primitive connectives. The aim of this paper is to establish the lattice formed by the class of all 4-valued C-extending implicative expansions of FDE verifying the axioms and rules of Routley and Meyer’s basic logic B and its useful disjunctive extension B$^{\textrm {d}}$. It is to be noted that Boolean negation (so, classical propositional logic) is definable in the strongest element in the said class.
包含Routley和Meyer基本逻辑Bd的Belnap-Dunn逻辑的所有4值隐含展开的格
由Belnap和Dunn提出的著名的逻辑一级蕴涵逻辑(FDE)是用$\wedge $、$\vee $和$\sim $作为唯一的原语连接词来定义的。本文的目的是建立由FDE的所有4值c扩展隐含展开类构成的格,以验证Routley和Meyer的基本逻辑B及其有用的析取扩展B$^{\textrm {d}}$的公理和规则。值得注意的是,布尔否定(也就是经典命题逻辑)在上述类的最强元素中是可定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
10.00%
发文量
76
审稿时长
6-12 weeks
期刊介绍: Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering. Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信