Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Xavier Erny, Eva Löcherbach, Dasha Loukianova
{"title":"Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling","authors":"Xavier Erny, Eva Löcherbach, Dasha Loukianova","doi":"10.1214/22-aap1900","DOIUrl":null,"url":null,"abstract":"We consider the stochastic system of interacting neurons introduced in (J. Stat. Phys. 158 (2015) 866–902) and in (Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016) 1844–1876) and then further studied in (Electron. J. Probab. 26 (2021) 20) in a diffusive scaling. The system consists of N neurons, each spiking randomly with rate depending on its membrane potential. At its spiking time, the potential of the spiking neuron is reset to 0 and all other neurons receive an additional amount of potential which is a centred random variable of order 1/ N. In between successive spikes, each neuron’s potential follows a deterministic flow. In our previous article (Electron. J. Probab. 26 (2021) 20) we proved the convergence of the system, as N→∞, to a limit nonlinear jumping stochastic differential equation. In the present article we complete this study by establishing a strong convergence result, stated with respect to an appropriate distance, with an explicit rate of convergence. The main technical ingredient of our proof is the coupling introduced in (Z. Wahrsch. Verw. Gebiete 34 (1976) 33–58) of the point process representing the small jumps of the particle system with the limit Brownian motion.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"12 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1900","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the stochastic system of interacting neurons introduced in (J. Stat. Phys. 158 (2015) 866–902) and in (Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016) 1844–1876) and then further studied in (Electron. J. Probab. 26 (2021) 20) in a diffusive scaling. The system consists of N neurons, each spiking randomly with rate depending on its membrane potential. At its spiking time, the potential of the spiking neuron is reset to 0 and all other neurons receive an additional amount of potential which is a centred random variable of order 1/ N. In between successive spikes, each neuron’s potential follows a deterministic flow. In our previous article (Electron. J. Probab. 26 (2021) 20) we proved the convergence of the system, as N→∞, to a limit nonlinear jumping stochastic differential equation. In the present article we complete this study by establishing a strong convergence result, stated with respect to an appropriate distance, with an explicit rate of convergence. The main technical ingredient of our proof is the coupling introduced in (Z. Wahrsch. Verw. Gebiete 34 (1976) 33–58) of the point process representing the small jumps of the particle system with the limit Brownian motion.
扩散尺度下相互作用神经元系统收敛到平均场极限的强误差界
我们考虑在[J. Stat. Phys. 158(2015) 866-902]和[Ann. cn]中引入的相互作用神经元的随机系统。亨利·庞卡罗:可能吧。Stat. 52(2016) 1844-1876),然后在(Electron。J.概率,26(2021)20)在扩散标度。该系统由N个神经元组成,每个神经元随机放电,其速率取决于其膜电位。在尖峰时刻,尖峰神经元的电位被重置为0,所有其他神经元接收到额外的电位,这是一个1/ n阶的中心随机变量。在连续的尖峰之间,每个神经元的电位遵循一个确定的流。在我们上一篇文章(电子)中。J. Probab. 26(2021) 20)证明了系统在N→∞时对一个极限非线性跳跃随机微分方程的收敛性。在本文中,我们通过建立一个关于适当距离的强收敛结果来完成这项研究,该结果具有明确的收敛速度。我们证明的主要技术成分是(Z. Wahrsch)中介绍的耦合。Verw。Gebiete 34(1976) 33-58)表示具有极限布朗运动的粒子系统的小跳变的点过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信