Geometry of random Cayley graphs of Abelian groups

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Jonathan Hermon, Sam Olesker-Taylor
{"title":"Geometry of random Cayley graphs of Abelian groups","authors":"Jonathan Hermon, Sam Olesker-Taylor","doi":"10.1214/22-aap1899","DOIUrl":null,"url":null,"abstract":"Consider the random Cayley graph of a finite Abelian group $G$ with respect to $k$ generators chosen uniformly at random, with $1 \\ll \\log k \\ll \\log |G|$. Draw a vertex $U \\sim \\operatorname{Unif}(G)$. We show that the graph distance $\\operatorname{dist}(\\mathsf{id},U)$ from the identity to $U$ concentrates at a particular value $M$, which is the minimal radius of a ball in $\\mathbb Z^k$ of cardinality at least $|G|$, under mild conditions. In other words, the distance from the identity for all but $o(|G|)$ of the elements of $G$ lies in the interval $[M - o(M), M + o(M)]$. In the regime $k \\gtrsim \\log |G|$, we show that the diameter of the graph is also asymptotically $M$. In the spirit of a conjecture of Aldous and Diaconis (1985), this $M$ depends only on $k$ and $|G|$, not on the algebraic structure of $G$. Write $d(G)$ for the minimal size of a generating subset of $G$. We prove that the order of the spectral gap is $|G|^{-2/k}$ when $k - d(G) \\asymp k$ and $|G|$ lies in a density-$1$ subset of $\\mathbb N$ or when $k - 2 d(G) \\asymp k$. This extends, for Abelian groups, a celebrated result of Alon and Roichman (1994). The aforementioned results all hold with high probability over the random Cayley graph.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"30 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Consider the random Cayley graph of a finite Abelian group $G$ with respect to $k$ generators chosen uniformly at random, with $1 \ll \log k \ll \log |G|$. Draw a vertex $U \sim \operatorname{Unif}(G)$. We show that the graph distance $\operatorname{dist}(\mathsf{id},U)$ from the identity to $U$ concentrates at a particular value $M$, which is the minimal radius of a ball in $\mathbb Z^k$ of cardinality at least $|G|$, under mild conditions. In other words, the distance from the identity for all but $o(|G|)$ of the elements of $G$ lies in the interval $[M - o(M), M + o(M)]$. In the regime $k \gtrsim \log |G|$, we show that the diameter of the graph is also asymptotically $M$. In the spirit of a conjecture of Aldous and Diaconis (1985), this $M$ depends only on $k$ and $|G|$, not on the algebraic structure of $G$. Write $d(G)$ for the minimal size of a generating subset of $G$. We prove that the order of the spectral gap is $|G|^{-2/k}$ when $k - d(G) \asymp k$ and $|G|$ lies in a density-$1$ subset of $\mathbb N$ or when $k - 2 d(G) \asymp k$. This extends, for Abelian groups, a celebrated result of Alon and Roichman (1994). The aforementioned results all hold with high probability over the random Cayley graph.
阿贝尔群的随机Cayley图的几何
考虑一个有限阿贝尔群$G$的随机Cayley图,该群对$k$均匀随机选择的生成器有$1 \ll \log k \ll \log |G|$。画一个顶点$U \sim \operatorname{Unif}(G)$。我们证明,从恒等式到$U$的图距离$\operatorname{dist}(\mathsf{id},U)$集中在一个特定的值$M$,这是在温和条件下,基数至少$|G|$的球在$\mathbb Z^k$中的最小半径。换句话说,$G$中除$o(|G|)$之外的所有元素与恒等式的距离都在$[M - o(M), M + o(M)]$区间内。在$k \gtrsim \log |G|$区域,我们证明了图的直径也是渐近的$M$。根据Aldous和Diaconis(1985)猜想的精神,这个$M$只依赖于$k$和$|G|$,而不依赖于$G$的代数结构。为$G$生成子集的最小大小编写$d(G)$。我们证明当$k - d(G) \asymp k$和$|G|$位于$\mathbb N$的密度- $1$子集或$k - 2 d(G) \asymp k$时,谱隙的阶数为$|G|^{-2/k}$。对于阿贝尔群,这延伸了Alon和Roichman(1994)的著名结果。上述结果在随机Cayley图上都有高概率成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信